[image: Version Control by Example]
Version Control by Example
Table of Contents
	1. Introduction
		A History of Version Control
	My Background
	Reading this book

	I. Centralized Version Control
		2. Basics
		Create
	Checkout
	Commit
	Update
	Add
	Edit
	Delete
	Rename
	Move
	Status
	Diff
	Revert
	Log
	Tag
	Branch
	Merge
	Resolve
	Lock

	3. Basics with Subversion
		Create
	Checkout, Add, Status, Commit
	Log, Diff
	Update, Commit (with a merge)
	Update (with merge)
	Move
	Rename
	Delete
	Lock, Revert
	Tag
	Branch
	Merge (no conflicts)
	Merge (repeated, no conflicts)
	Merge (conflicts)
	Summary

	II. Distributed Version Control
		4. More Basics
		Clone
	Push
	Pull
	Directed Acyclic Graphs (DAGs)

	5. Advantages
		Private Workspace
	Fast
	Offline
	Geography
	Flexible Workflows
	Easier Merging
	Implicit Backup
	Scale out, not just up

	6. Weaknesses
		Locks
	Very Large Repositories
	Integration
	Obliterate
	Administration
	Path-Based Access Control
	Ease of Use
	GUIs

	7. Basics with Mercurial
		Create
	Clone, Add, Status, Commit
	Push, Pull, Log, Diff
	Update, Commit (with a merge)
	Update (with merge)
	Move
	Rename
	Delete
	Revert
	Tag
	Branch
	Merge (no conflicts)
	Merge (repeated, no conflicts)
	Merge (conflicts)
	Summary

	8. Basics with Git
		Create
	Clone, Add, Status, Commit
	Push, Pull, Log, Diff
	Update, Commit (with a merge)
	Update (with merge)
	Move
	Rename
	Delete
	Revert
	Tag
	Branch
	Merge (no conflicts)
	Merge (repeated, no conflicts)
	Merge (conflicts)
	Summary

	9. About Veracity
		Decentralized Database
	User Accounts
	Commercial Open Source
	Designed for Integration
	Apache License 2.0
	Formal Rename and Move
	Repository Storage Plugins
	Multiple Working Copies
	Locks
	JavaScript
	Stamp
	Hash Functions
	Scrum

	10. Basics with Veracity
		Create
	Clone, Add, Status, Commit
	Push, Pull, Log, Diff
	Update, Commit (with a merge)
	Update (with merge)
	Move
	Rename
	Delete
	Lock, Revert
	Tag
	Branch
	Merge (no conflicts)
	Merge (repeated, no conflicts)
	Merge (conflicts)
	Summary

	III. Beyond Basics
		11. Workflows
		Managing Multiple Releases
	Shrinkwrap
		Polishing Branches
	Release Branches
	Feature Branches

	Web

	12. DVCS Internals
		Deltas
	Git: Cryptographic Hashes
		Example with SHA-1
	Collisions

	Mercurial: Repository Structure
		Revlogs
	Manifests
	Changesets

	Veracity: DAGs and Data
		DAGs and Blobs
	Changesets
	Treenodes
	DB Records
	Templates
	Repository Storage
	Blob Encodings

	13. Best Practices
		Run diff just before you commit, every time
	Read the diffs from other developers too
	Keep your repositories as small as possible
	Group your commits logically
	Explain your commits completely
	Only store the canonical stuff
	Don’t break the tree
	Use tags
	Always review the merge before you commit.
	Never obliterate anything
	Don’t comment out code
	Use locks sparingly
	Build and test your code after every commit

	A. Comparison Table
	Glossary
	Index

Version Control by Example

Eric Sink

 SourceGear

Copyright © 2011 Eric Sink

Acknowledgments

 I appreciate and want to acknowledge the efforts of
 those who helped me during the production of this book.

 Two of my coworkers at SourceGear have been involved
 in this project in very substantial ways.

 	

 Everything about this book that looks good is a credit to
 John Woolley. And if there is anything about this book that
 does not look good, that was probably an area where I got
 in his way.

 John did the design, the layout, the illustrations,
 the cover, the font choices, everything.

 Personally, I think the book looks fantastic. My thanks to
 John Woolley.

	

 The back of the title page lists Brody Finney as the “Editor”
 of this book, but that does not fully describe his contributions.

 While it is true that Brody’s pedantry and red ink were
 critical, he and I also spent much time talking
 through issues of structure and content. He has been my
 sounding board on everything from British slang to the
 explanations of version control concepts.

 My thanks to Brody Finney for the many and varied ways that
 he made the content of this book better.

 I received all kinds of helpful comments and constructive feedback
 from folks who read early drafts of this book.

 	

 My thanks to the following reviewers:
Tom Alderman,
Linda Bauer,
Jonathan Blocksom,
Rick Borup,
Anthony Bova,
Chris Bradley,
Mark Brents,
Brian Brewder,
Andy Brice,
Eli Carter,
Fletcher Chambers,
Michael Chermside,
Steven Cherry,
Zian Choy,
Jeff Clausius,
Jason Cohen,
Ben Collins-Sussman,
John Cook,
Pascal Cuoq,
Justin Davis,
Sybren Dijkstra,
Augie Fackler,
Emeric Fermas,
Wez Furlong,
Reggie Gardner,
Rafał Grembowski,
Fawad Halim,
Michael Haren,
Guy Harwood,
Mark Heath,
Kevin Horn,
Jeff Hostetler,
Kerry Jenkins,
Joel Jirak,
Zafiris Keramidas,
Beth Kieler,
Anthony Kirwan,
Kristian Kristensen,
Robert Lauer,
Sasha Matijasic,
Pierre Mengal,
Gordon J Milne,
Eamonn Murray,
Dirkjan Ochtman,
Ian Olsen,
John O’Neill,
Alex Papadimoulis,
Dobrica Pavlinušić,
Eric Peterson,
Mike Pettypiece,
C. Michael Pilato,
Pavel Puchkarev,
Sunil Puri,
Joe Ream,
Mike Reedell,
Alvaro Rodriguez,
Paul Roub,
Michael Schoneman,
Matt Schouten,
J. Maximilian Spurk,
Corey Steffen,
Greg Stein,
Scott Stocker,
Jared Stofflett,
Michael Third,
Dixie Thornhill,
Andy Tidball,
Ben Tsai,
Chuck Tuffli,
Greg Vaughn,
Wilbert van Dolleweerd,
Stephen Ward,
Rob Warner,
Cullen Waters,
Jason Webb,
Robin Wilson

	

 My original plan was to keep this section of the
 acknowledgments very simple, like the alphabetical list
 above, with no attempt to
 describe how much feedback each person provided me.

 This plan was utterly ruined by Jakub Narębski, whose
 feedback during the editing process was extraordinary. He found
 errors no one else found. He gave me pages of background commentary.
 He wrote drafts of content
 he felt was too important not to cover.

 I appreciate the comments I received from every person who reviewed
 my book, but trust me on this one—Jakub’s feedback was
 in a class by itself.

 It takes a lot of focus to write a book.
 Several people supported me in the writing of this book
 by covering for my absence and offering me their patience.
 My thanks to:

 	

 Ian Olsen, leader of the Veracity development team.

	

 Corey Steffen, my business partner.

	

 Lisa Sink, my wife; and Kellie and Lydia Sink, my daughters.

 Finally, and above all, I express my gratitude to the Creator. I have been blessed. And I am thankful.

Chapter 1. Introduction

A version control system is a piece of software
 that helps the developers on a software team work together and also archives a
 complete history of their work.

There are three basic goals of a version control system (VCS):

	
We want people to be able to work simultaneously, not serially.

Think of your team
 as a multi-threaded piece of software with each developer running in his own
 thread. The key to high performance in a multi-threaded system is to
 maximize concurrency. Our goal is to never have a thread which is blocked
 on some other thread.

	
When people are working at the same time, we want their changes to not
 conflict with each other.

 Multi-threaded programming requires great care on the part of the developer and special features such
 as critical sections, locks, and a test-and-set instruction on the CPU.
 Without these kinds of things, the threads would overwrite each other’s
 data.
 A multi-threaded software team needs things too, so that developers can
 work without messing each other up. That is what the version control
 system provides.

	
 We want to archive every version of everything that has ever existed — ever.

 And who did it. And when. And why.

A History of Version Control

Broadly speaking, the history of version control tools can be divided into three
 generations.[1]

Table 1.1. Three Generations of Version Control

 	Generation	Networking	Operations	Concurrency	Examples
	First 	None	One file at a time	Locks	RCS, SCCS
	Second 	Centralized	Multi-file	Merge
before
commit	CVS, SourceSafe,
Subversion,
Team Foundation Server
	Third 	Distributed	Changesets	Commit
before
merge	Bazaar,
Git,
Mercurial

The forty year history of version control tools shows a steady movement
 toward more concurrency.

	
 In first generation tools, concurrent development was handled solely with
 locks. Only one person could be
 working on a file at a time.

	
 The second generation tools are a fair bit more permissive about simultaneous modifications, with one notable restriction. Users must merge the current revisions into their work before they are allowed to commit.

	
 The third generation tools allow merge and commit to be separated.

 As I write this in mid-2011, the world of version control is in a time of transition.
 The vast majority of professional programmers are
 using second generation tools but the third generation is growing
 very quickly in popularity. The most popular VCS on Earth is
 Apache Subversion[2], an open source second generation tool. The high-end
 of the commercial market is dominated by IBM and Microsoft, both of which are
 firmly entrenched in second generation tools. But at the community level,
 where developers around the world talk about what’s new and cool, the
 buzz is all about Distributed Version Control Systems (DVCS). The three most popular DVCS tools are Bazaar[3], Git[4] and
 Mercurial[5].

[1] http://www.catb.org/~esr/writings/version-control/version-control.html — I don’t remember for sure. I may have gotten this notion of three generations from Eric Raymond’s “Understanding Version-Control Systems”. Either way, it’s a good read.

[2] http://subversion.apache.org/ — The proper name is “Apache Subversion”, but in the interest of saving space, I'll be referring to it as simply “Subversion” throughout this book.

[3] http://bazaar.canonical.com/en/

[4] http://git-scm.com/

[5] http://mercurial-scm.org/

My Background

 [image: My Background]

 I am a software developer and entrepreneur. In 1997, I founded SourceGear, a software company which produces version control tools.
 I write occasionally on my blog at
 http://www.ericsink.com/. Version control tools have been
 an interest of mine for a very
 long time:

 	
 RCS was the first version control tool I used.
 When I was at Spyglass,
 we had a team of 50
 or so developers across three platforms using RCS on a shared code
 base. Since RCS never had support for networking, people on Windows and Mac had
 to log in to the Sun workstation that hosted RCS, FTP their code changes up there, and
 then check them in from the Unix shell. It was an interesting experience just trying to
 get all that to work. We Mac developers ended up writing a tool that sat
 on top of RCS to
 help us cope—we created a Mac application that shelled into a different
 server and did RCS stuff for us. We called that thing
 Norad. Don’t ask me why
 we chose that name because I don’t remember.

	
 At
 SourceGear,
 our first flagship product, SourceOffSite, was basically “Norad
 for SourceSafe”.

 SourceSafe was kind of a generation 1.5 VCS.
 It was created by One Tree Software[6], a company that was acquired by
 Microsoft in
 1994.
 SourceSafe had multiple-file operations, but no
 networking. We created SourceOffSite partially because our own team
 needed remote access to our SourceSafe repository.
 We released it as a product in 1998 and it became rather popular.

	

 And that brought us to our next endeavor, which was to build a version
 control system of our own. In 2003 we released Vault, a second generation
 tool designed specifically to be a replacement for SourceSafe.
 It provides SourceSafe users with a
familiar experience and a seamless transition to a VCS with full support for
networking, atomic commits, and other second generation niceties. Vault has been our flagship product for most of
the last decade and has been very successful.

	
 In 2005, we created a division of SourceGear called Teamprise, focused on
 building Eclipse plugins for Microsoft Team Foundation Server. This
business was acquired by Microsoft in 2009.

	

Our latest version control effort is a third generation tool called
 Veracity[7]. Veracity is open source.

[6] One Tree’s founders
 included Brian Harry, who now leads the development of Microsoft Team
 Foundation Server.

[7] http://veracity-scm.com/

Reading this book

 First generation tools are mostly history at this point, so I won’t
 be discussing them much.

 I will cover the basics of version control with
 second generation tools in Part I, “Centralized Version Control”.

 I will spend most of my pages talking about DVCS, the third generation tools. In Part II, “Distributed Version Control”,
 I will cover the same basics as before, but from a DVCS perspective. I also include some pros and cons for
 people who are making decisions
 about centralized vs. decentralized VCS solutions.

 Note that the following four chapters are all very similar.

 	

 Chapter 3: “Basics with Subversion”

	

 Chapter 7: “Basics with Mercurial”

	

 Chapter 8: “Basics with Git”

	

 Chapter 10: “Basics with Veracity”

 These
 chapters walk through the same fictitious scenario using detailed examples,
 each with a different open source version control tool.
 Feel free to read
 the chapters corresponding to the tools that interest you most.
 Alternatively, you may want to read all four so that you can see how the
 various tools compare.

 Finally, in Part III, “Beyond Basics”, I will go a bit deeper.
 Learning about version control happens in two phases. In the first phase,
 the basics, we talk about “what”.

 	
 What can we do with a VCS?

	
 What commands are available?

 As we go deeper, we talk more about “how”.

 	
 How do we use a VCS?

	
 How should our development process work with a VCS?

	
 How does a VCS work?

 Be advised that this book is written primarily for the
 command-line user. Topics like graphical user interfaces
 and integrated development environments are not covered here
 in this first edition.
 I did all the examples on a Mac, but all four of the version control
 tools covered in this book work well on Windows and Linux systems
 also.

 The home page for this book is http://www.ericsink.com/vcbe

Part I. Centralized Version Control

Chapter 2. Basics

There are 18 basic operations you can do with a version control
 system.[8] In this chapter, I will introduce each of these operations as an
 abstract notion which can be implemented by the actual commands of a specific
 version control tool. Usually, the name of my abstract operation is
 the most common name for the command that implements the operation. For
 example, since the action of committing changes to the repository is called
 “commit” by Subversion, Veracity, Git, Mercurial, and Bazaar, it seemed
 like a good idea to use that term here as well.

For the details of how these operations map to the concrete
 commands of specific version control tools, see later chapters, such as
 Chapter 3: “Basics with Subversion”.

Create

 [image: Create]

Create a new, empty repository.

A repository is the official place where you store all your work.
 It keeps track of your tree, by which I mean all
 your files, as well as the layout of the directories
 in which they are stored.

But there has to be more. If the definition in the previous paragraph
 were the whole story, then a version control repository would be no more than a
 network filesystem. A repository is much more than that. A repository
 contains history.

 repository = filesystem * time

A filesystem is two-dimensional: Its space is defined by directories
 and files. In contrast, a repository is three-dimensional: It exists in a
 continuum defined by directories, files, and time. A version control repository
 contains every version of your source code that has ever existed.

A consequence of this idea is that
 nothing is ever really destroyed. Every time you make some kind of change to your
 repository, even if that change is to delete something, the repository gets larger because the history is longer.
Each change adds to the history of the repository. We never subtract
 anything from that history.

The create operation is used to create a new repository. This is one of the first operations you will use, and after that, it gets used a lot less often.

When you create a new repository, your VCS will expect you to say something to identify it, such as where you want it to be created, or what its name should be.

[8] Most version control systems have more than 18 commands, including lots of useful stuff I am not describing here. This chapter is about the 18 common operations which could be considered the core concepts of version control.

Checkout

 [image: Checkout]

Create a working copy.

The checkout operation is used when you need to make a new working copy for a repository that already exists.

A working copy is a copy used for, er, working.

A working copy is a snapshot of the repository used by a developer as a place to make changes. The repository is shared by the whole team, but people do not modify it directly. Rather,
 each individual developer works by using a working copy.
 The working copy provides her with a private workspace where she can do her work isolated from the rest of the team.

The life of a developer is an infinite loop which looks something like this:

	10 Make a working copy of the contents of the repository.

	20 Modify the working copy.

	30 Modify the repository to incorporate those modifications.

	40 GOTO 20

Let’s imagine for a moment what life would be like without this
 distinction between working copy and repository. In a single-person team,
 the situation could be described as tolerable. However, for any number of
 developers greater than one, things can get very messy.

I’ve seen people try it. They store their code on a file server.
 Everyone uses network file sharing and edits the source files in place.
 When somebody wants to edit main.cpp, they shout across the hall and ask if
 anybody else is using that file. Their Ethernet is saturated most of the
 time because the developers are actually compiling on their network
 drives.

With a version control tool, working on a multi-person team is much simpler. Each
 developer has a working copy to use as a private workspace. He can make
 changes to his own working copy without adversely affecting the rest of the
 team.

 The working copy is actually more than just a snapshot of the contents
 of the repository. It also contains some metadata so that it can keep
 careful track of the state of things.

Let’s suppose I have a brand new working copy. In other words, I started
 with nothing at all and I retrieved the latest versions from the
 repository. At this moment, my new working copy is completely synchronized
 with the contents of the repository. But that condition is not likely to
 last for long. I will be making changes to some of the files in this
 working copy so it will become newer than the repository. Other
 developers may be checking in their changes to the repository, thus making
 my working copy out of date. My working copy is going to be new and
 old at the same time. Things are going to get confusing. The version control tool is
 responsible for keeping track of everything. In fact, it must keep track
 of the state of each file individually.

For housekeeping purposes, the version control tool usually keeps a bit of extra
 information with the working copy. When a file is retrieved, the VCS
 stores its contents in the corresponding working copy of that file, but it
 also records
 certain information. For example:

	Your version control tool may record the timestamp on the working file so that it
 can later detect if you have modified it.

	It may record the version number of the repository file that was
 retrieved so that it may later know the starting point from which you
 began to make your changes.

	It may even tuck away a complete copy of the file that was retrieved
 so that it can show you a diff without accessing the server.

This stuff is stored in the administrative area, which is usually one or more hidden directories in the working copy. Its exact location
 depends on which version control tool you are using.

Commit

Apply the modifications in the working copy to the repository as a new changeset.

[image: Commit]

This is the operation that actually modifies the repository. Several
 others modify the working copy and add an operation to a list we call the pending
 changeset, a place where changes wait to be committed. The commit operation takes the pending
 changeset and uses it to create a new version of the tree in the
 repository.

All modern version control tools perform this operation atomically. In other words, no matter how many individual modifications are in your pending changeset, the repository will either end up with all of them (if the operation is successful), or none of them (if the operation fails).
 It is impossible for the repository to end up in a state with only half of
 the operations done. The integrity of the repository is assured.

It is typical to provide a log message (or comment) when you commit, explaining the changes you have made. This log message becomes part of the history of the repository.

Update

Update the working copy with respect to the repository.

[image: Update]

Update brings your working copy up-to-date by applying changes from the
 repository, merging them with any changes you have made to your working copy if necessary. When the working copy was first created, its contents exactly
 reflected a specific revision of the repository. The VCS remembers that
 revision so that it can keep careful track of where you started making your
 changes. This revision is often referred to as the parent of
 the working copy, because if you commit changes from the working copy, that
 revision will be the parent of the new changeset.[9]

Update is sort of like the mirror image of commit. Both operations move
 changes between the working copy and the repository. Commit goes from the
 working copy to the repository. Update goes in the other direction.

[9] Speaking generally, the update operation is used to change the parent of
 the working copy, most commonly moving it forward so that the working copy
 contains the most recent changes in the repository.

Add

 [image: Add]

Add a file or directory.

Use the add operation when you have a file or
 directory in your working copy that is not yet under version control and
 you want to add it to the repository. The item is not actually added immediately.
 Rather,
 the item
 becomes part of the pending changeset, and
 is added to the repository when you commit.

Edit

 [image: Edit]

Modify a file.

This is the most common operation when using a version control system. When you checkout, your working copy contains a bunch of files from the repository. You modify those files, expecting to make your changes a part of the repository.

With most version control tools, the edit operation doesn’t actually involve the VCS directly. You simply edit the file using your favorite text editor or development environment and the VCS will notice the change and make the modified file part of the pending changeset.

On the other hand, some version control tools want you to be more explicit. Such tools usually set the filesystem read-only bit on all files in the working copy. Later, when you notify the VCS that you want to modify a file, it will make the working copy of that file writable.

Delete

 [image: Delete]

Delete a file or directory.

Use the delete operation when you want to remove a file or directory from the repository.

If you try to delete a file which has been modified in your working copy, your VCS might complain.

Typically, the delete operation will immediately delete the working copy of the file, but the actual deletion of the file in the repository is simply added to the pending changeset.

Recall that in the repository the file is not really deleted. When you commit a changeset containing a delete, you are simply creating a new version of the tree which does not contain the deleted file. The previous version of the tree is still in the repository, and that version still contains the file.

Rename

 [image: Rename]

Rename a file or directory.

Use the rename operation when you want to change the name of a file or
 directory.
 The operation is added to the pending changeset, but the item
 in the working copy typically gets renamed immediately.

There is lot of variety in how version control tools support rename.
 Some of the earlier tools had no support for rename at all.

Some tools (including Bazaar and Veracity) implement rename formally, requiring that they be
 notified explicitly when something is to be renamed. Such tools treat the
 name of a file or directory as simply one of its attributes, subject to
 change over time.

Still other tools (including Git) implement rename informally, detecting
 renames by observing changes rather than by
 keeping track of the identity of a file. Rename detection usually works
 well in practice, but if a file has been both
 renamed and modified, there is a chance the VCS will do the
 wrong thing.

Move

 [image: Move]

Move a file or directory.

Use the move operation when you want to move a file or directory from one place in the tree to another.
 The operation is added to the pending changeset, but the item
 in the working copy typically gets moved immediately.

Some tools treat rename and move as the same
 operation (in the Unix tradition of treating the file’s entire path as its
 name), while others keep them separate (by thinking of the file’s name and
 its containing directory as separate attributes).

Status

 [image: Status]

List the modifications that have been made to the working copy.

As you make changes in your working copy, each change is added to the
 pending changeset.
 The status operation is used to see the pending changeset.
 Or to put it another
 way, status shows you what changes would be applied to the repository if you were to
 commit.

Diff

 [image: Diff]

Show the details of the modifications that have been made to the working copy.

Status provides a list of changes but no details about them. To see exactly what changes have been made to the files, you need to use the diff operation. Your VCS may implement diff in a number of different ways. For a command-line application, it may simply print out a diff to the console. Or your VCS might launch a visual diff application.

Revert

 [image: Revert]

Undo modifications that have been made to the working copy.

Sometimes I make changes to my working copy that I simply don’t intend to keep. Perhaps I
 tried to fix a bug and discovered that my fix introduced five new bugs which
 are worse than the one I started with. Or perhaps I just changed my mind.
 In any case, a very nice feature of a working copy is the ability to
 revert the changes I have made.

A complete revert of the working copy will throw away all your pending
 changes and return the working copy to the way it was just after you did
 the checkout.

Log

 [image: Log]

Show the history of changes to the repository.

Your repository keeps track of every version that has ever existed. The log operation is the way to see those records. It displays each changeset along with additional data such as:

	Who made the change?

	When was the change made?

	What was the log message?

Most version control tools present ways of slicing and dicing this
 information. For example, you can ask log to list all the changesets made
 by the user named Leonardo, or all the changesets made during April
 2010.

Tag

 [image: Tag]

Associate a meaningful name with a specific version in the repository.

Version control tools provide a
 way to mark a specific instant
 in the history of the repository with a meaningful name.

This is not altogether different from the descriptive and memorable names
 we use for variables and constants in our code. Which of the following two
 lines of code is easier to understand?

if (-43 == e)

if (ERR_FILE_NOT_FOUND == errorcode)

Similarly, which of the following is the most intuitive?

378

eb1637d58b1bd8f253a2f3610e8e5a7050a434ec

LAST_VERSION_BEFORE_COREY_FOULED_EVERYTHING_UP

Branch

 [image: Branch]

Create another line of development.

The branch operation is what you use when you want your development process
 to fork off into two different directions. For example, when you release version
 3.0, you might want to create a branch so that development of
 4.0 features can be kept separate from 3.0.x bug-fixes.

Merge

 [image: Merge]

Apply changes from one branch to another.

Typically when you have used branch to enable your
 development to diverge, you later want it to converge again, at
 least partially. For example, if you created a branch for 3.0.x
 bug-fixes, you probably want those bug-fixes to happen in
 the main line of development as well. Without the merge operation,
 you could still achieve this by manually doing the bug-fixes in
 both branches. Merge makes this operation simpler
 by automating things as much as possible.

Resolve

 [image: Resolve]

Handle conflicts resulting from a merge.

In some cases, the merge operation requires human intervention.
 Merge automatically deals with everything that can be done safely.
 Everything else is considered a conflict.
 For
 example, what if the file foo.js was modified
 in one branch and deleted in the other? This kind of situation requires
 a person to make the decisions. The resolve operation is used to help the
 user figure things out and to inform the VCS how the conflict should be
 handled.

Lock

 [image: Lock]

Prevent other people from modifying a file.

The lock operation is used to get exclusive rights to modify a file. Not
 all version control tools include this feature. In some cases, it is provided but is
 intended to be rarely used. For any files that are in a format based on
 plain text (source code, XML, etc.), it is usually best to just let the VCS
 handle the concurrency issues. But for binary files which cannot be
 automatically merged, it can be handy to grab a lock on a file.

Chapter 3. Basics with Subversion

 Futilisoft has begun work on a new product. This product calculates
 the probability (as an integer percentage) of winning the Powerball for any given
 set of numbers.

 Powerball[10] is a lottery in the United States. It involves drawing five white balls and one red ball, sometimes called the “power ball”.

 The company has assigned two developers to work
 on this new project, Harry, located in Birmingham, England, and Sally,
 located in Birmingham, Alabama. Both developers are telecommuting to
 the Futilisoft corporate headquarters in Cleveland. After a bit of
 discussion, they have decided
 to implement their product as a command-line app in C and to use
 Apache Subversion[11] 1.6.15 for version control.

[image: Basics with Subversion]

Create

 Sally gets the project started by creating a new repository.

~ server$ cd

~ server$ mkdir repos

~ server$ svnadmin create repos/lottery

~ server$ svnserve -d --root=/Users/sally/repos

 I consider the details of server configuration to be too esoteric for this book. So you can just assume that it happened here. Magically…

[10] http://powerball.com/

[11] http://subversion.apache.org/

Checkout, Add, Status, Commit

By this time Harry is back from his tea and is ready to create a working
 copy and start coding.

~ harry$ svn checkout svn://server.futilisoft.com/lottery
Checked out revision 0.

 Harry wonders if Sally has already done anything in the new repository.

~ harry$ cd lottery

lottery harry$ ls -al
total 0
drwxr-xr-x 3 harry staff 102 Apr 6 11:40 .
drwxr-xr-x 3 harry staff 102 Apr 6 11:40 ..
drwxr-xr-x 7 harry staff 238 Apr 6 11:40 .svn

Apparently not. Nothing here but the .svn
 administrative area.
Jolly good then. It’s time to start coding. He opens his text editor and
 creates the starting point for their product.

#include <stdio.h>
#include <stdlib.h>

int calculate_result(int white_balls[5], int power_ball)
{
 return 0;
}

int main(int argc, char** argv)
{
 if (argc != 7)
 {
 fprintf(stderr, "Usage: %s power_ball (5 white balls)\n", argv[0]);
 return -1;
 }

 int power_ball = atoi(argv[1]);

 int white_balls[5];
 for (int i=0; i<5; i++)
 {
 white_balls[i] = atoi(argv[2+i]);
 }

 int result = calculate_result(white_balls, power_ball);

 printf("%d percent chance of winning\n", result);

 return 0;
}

Typical of most initial implementations, this is missing a lot of
 features. But it’s a good place to begin. Before committing his
code, he wants to make sure it compiles and runs.

lottery harry$ gcc -std=c99 lottery.c

lottery harry$ ls -l
total 32
-rwxr-xr-x 1 harry staff 8904 Apr 6 12:15 a.out
-rw-r--r-- 1 harry staff 555 Apr 6 12:15 lottery.c

lottery harry$./a.out
Usage: ./a.out power_ball (5 white balls)

lottery harry$./a.out 42 1 2 3 4 5
0 percent chance of winning

Righto. Time to store this file in the repository.
 First Harry needs to add the file to the pending changeset.

lottery harry$ svn add lottery.c
A lottery.c

Harry uses the status operation to make sure the pending changeset looks proper.

lottery harry$ svn status
? a.out
A lottery.c

Subversion is complaining because it doesn’t know what to do about
 that a.out file. That’s a compiled
 executable, which should not be stored in a version control repository.
 Keep calm and carry on. Now
 it’s time to commit the file.

lottery harry$ svn commit -m "initial implementation"
Adding lottery.c
Transmitting file data .
Committed revision 1.

 Using the -m flag with svn commit is actually not a typical way of specifying the commit log message. Many
 folks just svn commit and then Subversion will
 bring up a text editor where they can type a multi-line comment. But
 that action is awkward to illustrate here in a book, so I’m just
 pretending that -m is typical usage.

Log, Diff

Now Sally needs to set up her own working copy.

~ sally$ svn checkout svn://server.futilisoft.com/lottery
A lottery/lottery.c
Checked out revision 1.

~ sally$ ls -l lottery
total 8
-rw-r--r-- 1 sally staff 555 Apr 6 12:41 lottery.c

When she sees that Harry has checked in the initial code they had
 previously discussed, Sally is happy as a coyote in the hen house.
 She wants to check the log to see the details.

~ sally$ cd lottery

lottery sally$ svn log
--
r1 | harry | 2011-04-06 12:32:46 -0500 (Wed, 06 Apr 2011) | 1 line

initial implementation
--

When Sally decides to take a look at the code, she immediately finds
 something that makes her nervous as a long-tailed cat in a room full of rockin’
 chairs. The program expects the red ball number to
 be the first argument, followed by the other five. But in the actual
 lottery, the five white numbers are always drawn and shown first. She
 worries this will be confusing for users so she decides to fix it.
 Fortunately it is only necessary to modify a few lines of main().

 if (argc != 7)
 {
 fprintf(stderr, "Usage: %s (5 white balls) power_ball\n", argv[0]);
 return -1;
 }

 int power_ball = atoi(argv[6]);

 int white_balls[5];
 for (int i=0; i<5; i++)
 {
 white_balls[i] = atoi(argv[1+i]);
 }

Now she wants to use the status operation to see the pending changes.

lottery sally$ svn status
M lottery.c

No surprise there. Subversion knows that lottery.c
 has been modified. She wants to double-check by reviewing the actual
 changes.

lottery sally$ svn diff
Index: lottery.c
===
--- lottery.c (revision 1)
+++ lottery.c (working copy)
@@ -11,16 +11,16 @@
 {
 if (argc != 7)
 {
- fprintf(stderr, "Usage: %s power_ball (5 white balls)\n", argv[0]);
+ fprintf(stderr, "Usage: %s (5 white balls) power_ball\n", argv[0]);
 return -1;
 }

- int power_ball = atoi(argv[1]);
+ int power_ball = atoi(argv[6]);

 int white_balls[5];
 for (int i=0; i<5; i++)
 {
- white_balls[i] = atoi(argv[2+i]);
+ white_balls[i] = atoi(argv[1+i]);
 }

 int result = calculate_result(white_balls, power_ball);

Ain’t that the berries!?!

 The basic svn diff command dumps output to the console in a format
 which is familiar to users of the standard Unix diff command. That’s
 the convention I’m using in this chapter. However, many users
 configure Subversion to bring up a visual diff app instead.

Update, Commit (with a merge)

Meanwhile, Harry has been coding as well. He heard somebody say that
it’s best to compile with all the warnings turned on, so he decides to give it
a try.

lottery harry$ gcc -std=c99 -Wall -Wextra -Werror lottery.c
cc1: warnings being treated as errors
lottery.c:5: warning: unused parameter 'white_balls'
lottery.c:5: warning: unused parameter 'power_ball'

I say! The code has some warnings. The calculate_result() function
isn’t using its parameters. Harry looks at the situation and realises the
problem immediately: That function should be checking its arguments for
validity! The power ball can be from 1 to 39 inclusive. The white balls can be
1 to 59 inclusive. So he implements the error checking.

int calculate_result(int white_balls[5], int power_ball)
{
 for (int i=0; i<5; i++)
 {
 if (
 (white_balls[i] < 1)
 || (white_balls[i] > 59)
)
 {
 return -1;
 }
 }

 if (
 (power_ball < 1)
 || (power_ball > 39)
)
 {
 return -1;
 }

 return 0;
}

Grand. Let’s see if it compiles.

lottery harry$ gcc -std=c99 -Wall -Wextra -Werror lottery.c

lottery harry$ ls -l
total 32
-rwxr-xr-x 1 harry staff 8904 Apr 6 13:23 a.out
-rw-r--r-- 1 harry staff 843 Apr 6 13:21 lottery.c

Quite. But Harry decides to diff before committing, just for good measure.

lottery harry$ svn diff
Index: lottery.c
===
--- lottery.c (revision 1)
+++ lottery.c (working copy)
@@ -4,6 +4,25 @@

 int calculate_result(int white_balls[5], int power_ball)
 {
+ for (int i=0; i<5; i++)
+ {
+ if (
+ (white_balls[i] < 1)
+ || (white_balls[i] > 59)
+)
+ {
+ return -1;
+ }
+ }
+
+ if (
+ (power_ball < 1)
+ || (power_ball > 39)
+)
+ {
+ return -1;
+ }
+
 return 0;
 }

Good show. Time to commit the change.

But Sally has been working at the same time and she had her change ready
 to commit first.

lottery sally$ svn commit -m "change order of the command line args to be \
 more like what the user will expect"
Sending lottery.c
Transmitting file data .
Committed revision 2.

Just after Sally commits her changes, Harry tries to commit his.

lottery harry$ svn commit -m "fix some warnings"
Sending lottery.c
Transmitting file data .svn: Commit failed (details follow):
svn: File '/lottery.c' is out of date

What’s all this then? Subversion is not allowing Harry to commit his change because it was based on a no-longer-current revision of lottery.c.

 This behavior on the part of Subversion is typical for a second generation VCS. The model is sometimes called “edit-merge-commit”, because it often requires the user to do a merge before they are allowed to commit.

Harry uses update to
 make his working copy current.

lottery harry$ svn update
G lottery.c
Updated to revision 2.

 In this case, the update went fine, and Harry is able to
 go forward without much trouble. But if things go badly, his working
 copy becomes a mixture of his changes all stirred up with the changes
 being merged in from the repository. If he has trouble with the merge,
 it will be difficult for him to back out and try again without losing
 his own work. This issue is a major problem with the way second
 generation tools handle merging.

Everything seems to be ship-shape and Bristol fashion. The 'G' next to lottery.c means that the
 file has been merged. Harry wants to see what happened.

lottery harry$ svn diff
Index: lottery.c
===
--- lottery.c (revision 2)
+++ lottery.c (working copy)
@@ -4,6 +4,25 @@

 int calculate_result(int white_balls[5], int power_ball)
 {
+ for (int i=0; i<5; i++)
+ {
+ if (
+ (white_balls[i] < 1)
+ || (white_balls[i] > 59)
+)
+ {
+ return -1;
+ }
+ }
+
+ if (
+ (power_ball < 1)
+ || (power_ball > 39)
+)
+ {
+ return -1;
+ }
+
 return 0;
 }

Interesting. Diff still shows only Harry’s changes. But the baseline
 version of lottery.c now shows “(revision 2)”, whereas in the previous diff it
showed “(revision 1)”. Harry decides to peek inside the file and
discovers that main() has some new code in it.
That must have come from Sally (who else?),
and apparently Subversion was able to merge Sally’s changes directly into
Harry’s modified copy of the file without any conflicts. Smashing! Still,
what was the purpose of these changes?

lottery harry$ svn log
--
r2 | sally | 2011-04-06 13:26:47 -0500 (Wed, 06 Apr 2011) | 1 line

change order of the command line args to be more like what the user will expect
--
r1 | harry | 2011-04-06 12:32:46 -0500 (Wed, 06 Apr 2011) | 1 line

initial implementation
--

Ah. Very well then. So Harry tries the commit once again.

lottery harry$ svn commit -m "fix some warnings"
Sending lottery.c
Transmitting file data .
Committed revision 3.

Update (with merge)

Meanwhile, Sally is fixin’ to go ahead and add a
 feature that was requested by the sales team: If
 the user chooses the lucky number 7 as the red ball, the chances of
 winning are doubled. Since she is starting a new task, she decides to
 begin with an update to make sure she has the latest code.

lottery sally$ svn update
U lottery.c
Updated to revision 3.

Then she implements the lucky 7 feature in two shakes of a lamb’s tail by adding just a few lines
 of new code to main().

lottery sally$ svn diff
Index: lottery.c
===
--- lottery.c (revision 3)
+++ lottery.c (working copy)
@@ -44,6 +44,11 @@

 int result = calculate_result(white_balls, power_ball);

+ if (7 == power_ball)
+ {
+ result = result * 2;
+ }
+
 printf("%d percent chance of winning\n", result);

 return 0;

And commits her change.

lottery sally$ svn commit -m "lucky 7"
Sending lottery.c
Transmitting file data .
Committed revision 4.

Meanwhile, Harry has realised his last change had a bug. He modified
 calculate_result() to return -1 for invalid arguments but he forgot to modify
the caller to handle the error. As a consequence, entering a ball number that is
out of range causes the program to behave improperly.

lottery harry$./a.out 61 2 3 4 5 42
-1 percent chance of winning

The percent chance of winning certainly can’t be a negative number, now can it? So
 Harry adds an extra check for this case.

lottery harry$ svn diff
Index: lottery.c
===
--- lottery.c (revision 3)
+++ lottery.c (working copy)
@@ -44,6 +44,12 @@

 int result = calculate_result(white_balls, power_ball);

+ if (result < 0)
+ {
+ fprintf(stderr, "Invalid arguments\n");
+ return -1;
+ }
+
 printf("%d percent chance of winning\n", result);

 return 0;

And proceeds to commit the fix.

lottery harry$ svn commit -m "propagate error code"
Sending lottery.c
Transmitting file data .svn: Commit failed (details follow):
svn: File '/lottery.c' is out of date

Blimey! Sally must have committed a new changeset already. Harry
 once again needs to do an update to merge Sally’s changes with his
 own.

lottery harry$ svn update
Conflict discovered in 'lottery.c'.
Select: (p) postpone, (df) diff-full, (e) edit,
 (mc) mine-conflict, (tc) theirs-conflict,
 (s) show all options:

The merge didn’t go quite as smoothly this time.
 Apparently there
was a conflict. Harry wonders if he could sneak out for a pint. Instead, Harry chooses the
(df) option to review the conflicting changes.

lottery harry$ svn update
Conflict discovered in 'lottery.c'.
Select: (p) postpone, (df) diff-full, (e) edit,
 (mc) mine-conflict, (tc) theirs-conflict,
 (s) show all options: df
--- .svn/text-base/lottery.c.svn-base Wed Apr 6 14:07:48 2011
+++ .svn/tmp/lottery.c.2.tmp Wed Apr 6 19:53:26 2011
@@ -44,6 +44,20 @@

 int result = calculate_result(white_balls, power_ball);

+<<<<<<< .mine
+ if (result < 0)
+ {
+ fprintf(stderr, "Invalid arguments\n");
+ return -1;
+ }
+
+=======
+ if (7 == power_ball)
+ {
+ result = result * 2;
+ }
+
+>>>>>>> .r4
 printf("%d percent chance of winning\n", result);

 return 0;
Select: (p) postpone, (df) diff-full, (e) edit, (r) resolved,
 (mc) mine-conflict, (tc) theirs-conflict,
 (s) show all options:

Just like that. A conflict. Harry decides to (p) postpone it so he can look
 at the problem more carefully.

Select: (p) postpone, (df) diff-full, (e) edit, (r) resolved,
 (mc) mine-conflict, (tc) theirs-conflict,
 (s) show all options: p
C lottery.c
Updated to revision 4.
Summary of conflicts:
 Text conflicts: 1

Now he opens lottery.c in his editor to examine the situation.

...
 int result = calculate_result(white_balls, power_ball);

<<<<<<< .mine
 if (result < 0)
 {
 fprintf(stderr, "Invalid arguments\n");
 return -1;
 }

=======
 if (7 == power_ball)
 {
 result = result * 2;
 }

>>>>>>> .r4
 printf("%d percent chance of winning\n", result);

 return 0;
...

Subversion has included both Harry’s code and Sally’s code with conflict
 markers to delimit things. It appears that Sally’s new code can simply be
 included right after
Harry’s error checking. So in this case, resolving the conflict is frightfully
simple. Harry just removes the lines containing the conflict markers.

...
 int result = calculate_result(white_balls, power_ball);

 if (result < 0)
 {
 fprintf(stderr, "Invalid arguments\n");
 return -1;
 }

 if (7 == power_ball)
 {
 result = result * 2;
 }

 printf("%d percent chance of winning\n", result);

 return 0;
...

That should take care of the problem. Harry compiles the code to make
 sure and then retries the commit.

lottery harry$ svn commit -m "propagate error code"
svn: Commit failed (details follow):
svn: Aborting commit: '/Users/harry/lottery/lottery.c' remains in conflict

Crikey! Howzat? Harry fixed the conflict in lottery.c but
Subversion doesn’t seem to know that.

lottery harry$ svn status
? a.out
? lottery.c.r3
? lottery.c.r4
? lottery.c.mine
C lottery.c

Harry sees that 'C' next to lottery.c and realises that he forgot to tell Subversion that he had resolved the conflict.
He
uses resolve to let Subversion know that the problem has
been dealt with.

lottery harry$ svn resolve --accept=working lottery.c
Resolved conflicted state of 'lottery.c'

lottery harry$ svn status
? a.out
M lottery.c

There, that looks much better. Harry tries the commit for the third time.

lottery harry$ svn commit -m "propagate error code"
Sending lottery.c
Transmitting file data .
Committed revision 5.

And… Bob’s your uncle.

Move

Harry immediately moves on to his next task, which is to put the
 repository into the recommended structure[12].

lottery harry$ mkdir trunk

lottery harry$ svn add trunk
A trunk

lottery harry$ svn move lottery.c trunk
A trunk/lottery.c
D lottery.c

lottery harry$ mkdir branches

lottery harry$ svn add branches
A branches

lottery harry$ svn st
D lottery.c
A trunk
A + trunk/lottery.c
A branches

lottery harry$ svn commit -m "recommended dir structure"
Adding branches
Deleting lottery.c
Adding trunk
Adding trunk/lottery.c

Committed revision 6.

 Ouch. Subversion’s move command (which is also used for rename)
 appears to be implemented as an add and a delete. This
 makes me worry that the upcoming merge is not going to go smoothly.

Sally decides having the number 7 as a constant in the
 code is as ugly as homemade soap. She adds a #define to give it a more meaningful
 name.

lottery sally$ svn diff
Index: lottery.c
===
--- lottery.c (revision 5)
+++ lottery.c (working copy)
@@ -2,6 +2,8 @@
 #include <stdio.h>
 #include <stdlib.h>

+#define LUCKY_NUMBER 7
+
 int calculate_result(int white_balls[5], int power_ball)
 {
 for (int i=0; i<5; i++)
@@ -50,7 +52,7 @@
 return -1;
 }

- if (7 == power_ball)
+ if (LUCKY_NUMBER == power_ball)
 {
 result = result * 2;
 }

And immediately tries to commit the change.

lottery sally$ svn commit -m "use a #define for the lucky number"
Sending lottery.c
Transmitting file data .svn: Commit failed (details follow):
svn: File not found: transaction '6-8', path '/lottery.c'

But Subversion says “File not found”? What in the Sam Hill is that? Sally tries an update.

lottery sally$ svn update
 C lottery.c
A trunk
A trunk/lottery.c
A branches
Updated to revision 6.
Summary of conflicts:
 Tree conflicts: 1

lottery sally$ svn st
A + C lottery.c
 > local edit, incoming delete upon update

Tree conflict? “Incoming delete upon update”? Sally wonders if she could sneak out for some collard greens.

 Subversion failed to merge the changes from Sally’s working copy
into the moved file. I was sort of expecting this when I saw earlier that
Subversion was showing the move as an add/delete.

Apparently lottery.c has moved into a subdirectory
 called trunk. Sally remembers discussing this with
 Harry. So she re-applies her #define changes to the new
 lottery.c in trunk.

lottery sally$ svn st
A + C lottery.c
 > local edit, incoming delete upon update
M trunk/lottery.c

Now svn status shows the edits she just made, but it’s still bellyaching about conflicts with the old lottery.c. That file isn’t supposed to exist anymore. Since her changes have now been made in the new lottery.c, she decides to revert her changes to the old one.

lottery sally$ svn revert lottery.c
Reverted 'lottery.c'

lottery sally$ svn st
? lottery.c
M trunk/lottery.c

lottery sally$ rm lottery.c

That resulted in svn status saying ?, so she just deletes her working copy of the file.

Now diff shows her changes applied to the new copy.

lottery sally$ svn diff
Index: trunk/lottery.c
===
--- trunk/lottery.c (revision 6)
+++ trunk/lottery.c (working copy)
@@ -2,6 +2,8 @@
 #include <stdio.h>
 #include <stdlib.h>

+#define LUCKY_NUMBER 7
+
 int calculate_result(int white_balls[5], int power_ball)
 {
 for (int i=0; i<5; i++)
@@ -50,7 +52,7 @@
 return -1;
 }

- if (7 == power_ball)
+ if (LUCKY_NUMBER == power_ball)
 {
 result = result * 2;
 }

And she is ready to commit.

lottery sally$ svn commit -m "use a #define for the lucky number"
Sending trunk/lottery.c
Transmitting file data .
Committed revision 7.

[12] For Subversion and other tools which represent branches as directories, it is considered good practice to keep the trunk at the top level of the tree alongside a directory into which branches are placed.

Rename

 Harry decides the time has come to create a proper
Makefile. And also to gratuitously rename
lottery.c.

trunk harry$ svn add Makefile
A Makefile

trunk harry$ svn move lottery.c pb.c
A pb.c
D lottery.c

trunk harry$ svn commit -m "Makefile. and lottery.c was too long to type."
Adding trunk/Makefile
Deleting trunk/lottery.c
Adding trunk/pb.c
Transmitting file data .
Committed revision 8.

Sally maintains her momentum with #define and adds names for the ball ranges.

trunk sally$ svn diff
Index: lottery.c
===
--- lottery.c (revision 7)
+++ lottery.c (working copy)
@@ -3,6 +3,8 @@
 #include <stdlib.h>

 #define LUCKY_NUMBER 7
+#define MAX_WHITE_BALL 59
+#define MAX_POWER_BALL 39

 int calculate_result(int white_balls[5], int power_ball)
 {
@@ -10,7 +12,7 @@
 {
 if (
 (white_balls[i] < 1)
- || (white_balls[i] > 59)
+ || (white_balls[i] > MAX_WHITE_BALL)
)
 {
 return -1;
@@ -19,7 +21,7 @@

 if (
 (power_ball < 1)
- || (power_ball > 39)
+ || (power_ball > MAX_POWER_BALL)
)
 {
 return -1;

And commits her changes.

trunk sally$ svn commit -m "more #defines"
Sending trunk/lottery.c
Transmitting file data .svn: Commit failed (details follow):
svn: File not found: transaction '8-b', path '/trunk/lottery.c'

Grrr. Tree conflict problem again. That Harry is dumber than a box of rocks.
This looks a lot like the last problem she had, so she figures it’ll get fixed
the same way.

trunk sally$ svn update
 C lottery.c
A pb.c
A Makefile
Updated to revision 8.
Summary of conflicts:
 Tree conflicts: 1

trunk sally$ svn st
M pb.c
A + C lottery.c
 > local edit, incoming delete upon update

trunk sally$ svn revert lottery.c
Reverted 'lottery.c'

trunk sally$ svn st
? lottery.c
M pb.c

trunk sally$ rm lottery.c

trunk sally$ svn st
M pb.c

 Even though Subversion did not handle this incoming rename
 merge gracefully, it is interesting to note that it correctly
 produced pb.c, complete with Sally’s changes in it.

trunk sally$ svn commit -m "more #defines"
Sending trunk/pb.c
Transmitting file data .
Committed revision 9.

Delete

Harry wants to get a head start on Zawinski’s Law, so he decides to add
 an IMAP protocol library to their tree.

 As spoken by the legendary Jamie Zawinski[13]: “Every program attempts to expand until it can read
 mail. Those programs which cannot so expand are replaced by ones which
 can.”

trunk harry$ svn commit -m "add libvmime so we can do the mail reader feature"
Adding trunk/libvmime-0.9.1
Adding trunk/libvmime-0.9.1/AUTHORS
Adding trunk/libvmime-0.9.1/COPYING
Adding trunk/libvmime-0.9.1/ChangeLog
Adding trunk/libvmime-0.9.1/HACKING
Adding trunk/libvmime-0.9.1/INSTALL
Adding trunk/libvmime-0.9.1/Makefile.am
...
Transmitting file data ...
Committed revision 10.

Sally does an update and finds something that reminds
 her of what comes out of the south end of a northbound dog.

trunk sally$ svn update
A libvmime-0.9.1
A libvmime-0.9.1/vmime.vcproj
A libvmime-0.9.1/README.refcounting
A libvmime-0.9.1/m4
A libvmime-0.9.1/m4/lib-link.m4
A libvmime-0.9.1/m4/lib-prefix.m4
A libvmime-0.9.1/m4/acx_pthread.m4
A libvmime-0.9.1/m4/lib-ld.m4
A libvmime-0.9.1/m4/libgnutls.m4
...
Updated to revision 10.

Sally remembers that the specification
 says the product isn’t supposed to include a full email reader until the
 next release. For the entire 1.0 development cycle, that third party
 library is going to be about as useful as a trap door in a canoe. So she
 deletes it.

trunk sally$ svn delete libvmime-0.9.1
D libvmime-0.9.1/vmime.vcproj
D libvmime-0.9.1/README.refcounting
D libvmime-0.9.1/m4/lib-link.m4
D libvmime-0.9.1/m4/lib-prefix.m4
D libvmime-0.9.1/m4/acx_pthread.m4
D libvmime-0.9.1/m4/lib-ld.m4
D libvmime-0.9.1/m4/libgnutls.m4
...

trunk sally$ svn commit -m "no mail reader until 2.0"
Deleting trunk/libvmime-0.9.1

Committed revision 11.

[13] http://www.jwz.org/blog/

Lock, Revert

 Fed up with conflicts, Sally decides to lock pb.c so only she can modify it.

trunk sally$ svn lock pb.c
'pb.c' locked by user 'sally'.

Harry does an update.

trunk harry$ svn update
U pb.c
D libvmime-0.9.1
Updated to revision 11.

trunk harry$ ls
Makefile pb.c

trunk harry$ ls -l
total 16
-rw-r--r-- 1 harry staff 58 Apr 7 08:13 Makefile
-rw-r--r-- 1 harry staff 1121 Apr 7 08:51 pb.c

Blast! That daft Sally deleted all his email code!
Harry decides to indent[14] pb.c.

trunk harry$ indent pb.c

trunk harry$ svn st
? pb.c.BAK
M pb.c

trunk harry$ svn commit -m "indent pb.c"
Sending trunk/pb.c
Transmitting file data .svn: Commit failed (details follow):
svn: User harry does not own lock on path '/trunk/pb.c' (currently locked by sally)

What a kerfuffle. Harry reverts the changes.

trunk harry$ svn revert pb.c
Reverted 'pb.c'

trunk harry$ svn st
? pb.c.BAK

trunk harry$ rm pb.c.BAK

Sally, basking in the comfort of her lock, makes her edits. She has
decided to eliminate uses of atoi(), which is deprecated.

trunk sally$ svn diff
Index: pb.c
===
--- pb.c (revision 10)
+++ pb.c (working copy)
@@ -43,7 +43,14 @@
 int white_balls[5];
 for (int i=0; i<5; i++)
 {
- white_balls[i] = atoi(argv[1+i]);
+ char* endptr = NULL;
+ long val = strtol(argv[1+i], &endptr, 10);
+ if (*endptr)
+ {
+ fprintf(stderr, "Invalid arguments\n");
+ return -1;
+ }
+ white_balls[i] = (int) val;
 }

 int result = calculate_result(white_balls, power_ball);

trunk sally$ make
gcc -std=c99 -Wall -Wextra -Werror pb.c -o pb

trunk sally$./pb 1 2 3 4 5 6
0 percent chance of winning

trunk sally$./pb 1 2 3e 4 5 6
Invalid arguments

And she commits her changes, easy as falling off a greasy log.

trunk sally$ svn commit -m "use strtol. atoi is deprecated."
Sending trunk/pb.c
Transmitting file data .
Committed revision 12.

After this commit is finished, Subversion removes her lock so that others can once again modify the file.

[14] http://en.wikipedia.org/wiki/Indent_(Unix)

Tag

Still mourning the loss of his email code, Harry creates a
 tag so he can more easily access it later.

lottery harry$ mkdir tags

lottery harry$ svn add tags
A tags

 Subversion implements tag through the use of its
 “cheap copy” mechanism, which is also used for branch. The idea is that Subversion can make a copy of any object in the tree without duplicating all the data. The new copy is simply a link to the other one, but as the two items change, they diverge while sharing their history. In Subversion, a tag is a branch which nobody intends to modify.

lottery harry$ svn copy --revision=10 trunk \
 tags/just_before_sally_deleted_my_email_code

lottery harry$ svn st
A tags
A + tags/just_before_sally_deleted_my_email_code

lottery harry$ svn commit -m "tag snapshot in case I need the email code"
Adding tags
Adding tags/just_before_sally_deleted_my_email_code

Committed revision 13.

Sally sees Harry gloating in the company chat room about his
beloved tag, so she does an
 update.

trunk sally$ svn update
At revision 13.

She doesn’t get the tag. But Sally didn’t just fall off the turnip truck. She notices that she executed that command from the trunk directory. She needs to cd up one level and try again.

 Note that with Subversion, most commands take effect from the
 current directory and recurse down. Everything else is
 ignored. This contrasts with some other VCS tools where most commands
 work on the entire tree.

trunk sally$ cd ..

lottery sally$ svn update
A tags
A tags/just_before_sally_deleted_my_email_code
...
Updated to revision 13.

Sally sees Harry’s tag and rolls her eyes. Fine. Whatever.

Branch

 Sally wants more privacy. She decides to create her own branch.

lottery sally$ ls
branches tags trunk

lottery sally$ svn copy trunk branches/no_boys_allowed
A branches/no_boys_allowed

lottery sally$ svn st
? trunk/pb
A + branches/no_boys_allowed
? branches/no_boys_allowed/pb

lottery sally$ svn commit -m "a private branch so I can work without harry"
Adding branches/no_boys_allowed

Committed revision 14.

 Subversion uses
 directory branches—a branch shows up in the tree as a directory.
 DVCS tools use a very different branching model.
 Some people find directory branches easier
 because they’re more visible. One problem with directory branches
 is that it is possible to commit to two branches at the same time.

Now that Sally is working in her own branch, she feels much more
 productive. She adds support for the “favorite” option. When a user is playing
 his
favorite numbers, his chances of winning should be doubled. In doing this,
she had to rework the way command-line args are parsed.
And she removes an atoi() call she missed last time.
And she restructures all the error checking into one place.

So main() now looks like this:

int main(int argc, char** argv)
{
 int balls[6];
 int count_balls = 0;
 int favorite = 0;

 for (int i=1; i<argc; i++)
 {
 const char* arg = argv[i];

 if ('-' == arg[0])
 {
 if (0 == strcmp(arg, "-favorite"))
 {
 favorite = 1;
 }
 else
 {
 goto usage_error;
 }
 }
 else
 {
 char* endptr = NULL;
 long val = strtol(arg, &endptr, 10);
 if (*endptr)
 {
 goto usage_error;
 }
 balls[count_balls++] = (int) val;
 }
 }

 if (6 != count_balls)
 {
 goto usage_error;
 }

 int power_ball = balls[5];

 int result = calculate_result(balls, power_ball);

 if (result < 0)
 {
 goto usage_error;
 }

 if (LUCKY_NUMBER == power_ball)
 {
 result = result * 2;
 }

 if (favorite)
 {
 result = result * 2;
 }

 printf("%d percent chance of winning\n", result);

 return 0;

usage_error:
 fprintf(stderr, "Usage: %s [-favorite] (5 white balls) power_ball\n", argv[0]);
 return -1;
}

She commits her changes, knowing that the commit will succeed because she
 is working in her private branch.

no_boys_allowed sally$ svn commit -m "add -favorite and cleanup some other stuff"
Sending no_boys_allowed/pb.c
Transmitting file data .
Committed revision 15.

 I am happy for Sally and her burst of productivity here, but
 she probably should have made these changes in two or three
 separate commits instead of squashing them all into one.

Merge (no conflicts)

Meanwhile, over in the trunk, Harry decides the white balls should be sorted before analysing them,
because that’s how they get shown on the telly.

trunk harry$ svn diff
Index: pb.c
===
--- pb.c (revision 12)
+++ pb.c (working copy)
@@ -6,6 +6,25 @@
 #define MAX_WHITE_BALL 59
 #define MAX_POWER_BALL 39

+static int my_sort_func(const void* p1, const void* p2)
+{
+ int v1 = *((int *) p1);
+ int v2 = *((int *) p2);
+
+ if (v1 < v2)
+ {
+ return -1;
+ }
+ else if (v1 > v2)
+ {
+ return 1;
+ }
+ else
+ {
+ return 0;
+ }
+}
+
 int calculate_result(int white_balls[5], int power_ball)
 {
 for (int i=0; i<5; i++)
@@ -27,6 +46,8 @@
 return -1;
 }

+ qsort(white_balls, 5, sizeof(int), my_sort_func);
+
 return 0;
 }

And he commits the change.

trunk harry$ svn commit -m "sort the white balls"
Sending trunk/pb.c
Transmitting file data .
Committed revision 16.

But now he’s curious about what Sally has been doing. She said he
 wasn’t allowed to commit to her branch but she didn’t say anything about
 looking at it.

trunk harry$ cd ../branches/

branches harry$ svn update
A no_boys_allowed
A no_boys_allowed/pb.c
A no_boys_allowed/Makefile
Updated to revision 16.

branches harry$ svn log
--
r15 | sally | 2011-04-08 09:04:38 -0500 (Fri, 08 Apr 2011) | 1 line

add -favorite and cleanup some other stuff
--
...

Interesting. She added the “favorite” feature. Harry decides he wants
 that. So he asks Subversion to merge stuff from Sally’s branch into
trunk.

branches harry$ cd ..

lottery harry$ cd trunk

trunk harry$ svn merge ../branches/no_boys_allowed
--- Merging r14 through r16 into '.':
U pb.c

Smashing! Harry examines pb.c and discovers that it was merged correctly.
 Sally’s “favorite” changes are there and his qsort changes are as well. So he
compiles the code, runs a quick test, and commits the merge.

trunk harry$ make
gcc -std=c99 -Wall -Wextra -Werror pb.c -o pb

trunk harry$./pb -favorite 5 3 33 22 7 31
0 percent chance of winning

trunk harry$ svn commit -m "merge changes from sally"
Sending trunk
Sending trunk/pb.c
Transmitting file data .
Committed revision 17.

Merge (repeated, no conflicts)

Simultaneously, both Harry and Sally realize that their code has no comments.

Harry:

trunk harry$ svn diff
Index: pb.c
===
--- pb.c (revision 17)
+++ pb.c (working copy)
@@ -47,6 +47,7 @@
 return -1;
 }

+ // lottery ball numbers are always shown sorted
 qsort(white_balls, 5, sizeof(int), my_sort_func);

 return 0;

trunk harry$ svn commit -m "just a comment"
Sending trunk/pb.c
Transmitting file data .
Committed revision 18.

And Sally:

no_boys_allowed sally$ svn diff
Index: pb.c
===
--- pb.c (revision 15)
+++ pb.c (working copy)
@@ -35,7 +35,7 @@
 {
 int balls[6];
 int count_balls = 0;
- int favorite = 0;
+ int favorite = 0; // this should be a bool

 for (int i=1; i<argc; i++)
 {
@@ -69,10 +69,13 @@
 goto usage_error;
 }

+ // the power ball is always the last one given
 int power_ball = balls[5];

 int result = calculate_result(balls, power_ball);

+ // calculate result can return -1 if the ball numbers
+ // are out of range
 if (result < 0)
 {
 goto usage_error;

no_boys_allowed sally$ svn commit -m "a few comments"
Sending no_boys_allowed/pb.c
Transmitting file data .
Committed revision 19.

Harry decides to try again to merge the changes from Sally’s branch.

 Subversion does a nice job with the repeated merge here. On the
 first merge, it gets r14 through r16. On this second merge, it gets
 r17 through r19, because it remembered the previous
 merge.

lottery harry$ svn update
U branches/no_boys_allowed/pb.c
Updated to revision 19.

lottery harry$ cd trunk

trunk harry$ svn merge ../branches/no_boys_allowed/
--- Merging r17 through r19 into '.':
U pb.c

trunk harry$ svn diff

Property changes on: .

Modified: svn:mergeinfo
 Merged /branches/no_boys_allowed:r17-19

Index: pb.c
===
--- pb.c (revision 19)
+++ pb.c (working copy)
@@ -57,7 +57,7 @@
 {
 int balls[6];
 int count_balls = 0;
- int favorite = 0;
+ int favorite = 0; // this should be a bool

 for (int i=1; i<argc; i++)
 {
@@ -91,10 +91,13 @@
 goto usage_error;
 }

+ // the power ball is always the last one given
 int power_ball = balls[5];

 int result = calculate_result(balls, power_ball);

+ // calculate result can return -1 if the ball numbers
+ // are out of range
 if (result < 0)
 {
 goto usage_error;

No worries on the merge then. Harry checks to see if everything compiles, and commits the merge.

trunk harry$ make
gcc -std=c99 -Wall -Wextra -Werror pb.c -o pb

trunk harry$ svn commit -m "merge changes from sally"
Sending trunk
Sending trunk/pb.c
Transmitting file data .
Committed revision 20.

Merge (conflicts)

 Sally realizes that C99 has a bool type that should have been used.

no_boys_allowed sally$ svn diff
Index: pb.c
===
--- pb.c (revision 19)
+++ pb.c (working copy)
@@ -2,6 +2,7 @@
 #include <stdio.h>
 #include <stdlib.h>
 #include <string.h>
+#include <stdbool.h>

 #define LUCKY_NUMBER 7
 #define MAX_WHITE_BALL 59
@@ -35,7 +36,7 @@
 {
 int balls[6];
 int count_balls = 0;
- int favorite = 0; // this should be a bool
+ bool favorite = false;

 for (int i=1; i<argc; i++)
 {
@@ -45,7 +46,7 @@
 {
 if (0 == strcmp(arg, "-favorite"))
 {
- favorite = 1;
+ favorite = true;
 }
 else
 {

no_boys_allowed sally$ svn commit -m "use the bool type"
Sending no_boys_allowed/pb.c
Transmitting file data .
Committed revision 21.

Meanwhile, Harry has been grumbling about Sally’s butchering of the Queen’s English and
 decides to correct the spelling of the word “favourite”.

trunk harry$ svn diff
Index: pb.c
===
--- pb.c (revision 20)
+++ pb.c (working copy)
@@ -57,7 +57,7 @@
 {
 int balls[6];
 int count_balls = 0;
- int favorite = 0; // this should be a bool
+ int favourite = 0; // this should be a bool

 for (int i=1; i<argc; i++)
 {
@@ -65,9 +65,9 @@

 if ('-' == arg[0])
 {
- if (0 == strcmp(arg, "-favorite"))
+ if (0 == strcmp(arg, "-favourite"))
 {
- favorite = 1;
+ favourite = 1;
 }
 else
 {
@@ -108,7 +108,7 @@
 result = result * 2;
 }

- if (favorite)
+ if (favourite)
 {
 result = result * 2;
 }
@@ -118,7 +118,7 @@
 return 0;

 usage_error:
- fprintf(stderr, "Usage: %s [-favorite] (5 white balls) power_ball\n", argv[0]);
+ fprintf(stderr, "Usage: %s [-favourite] (5 white balls) power_ball\n", argv[0]);
 return -1;
 }

Feeling quite chuffed about his pedantry,
 Harry proceeds to commit the change.

trunk harry$ svn commit -m "fixed spelling error"
Sending trunk/pb.c
Transmitting file data .
Committed revision 22.

And to once again merge Sally’s changes into trunk.

trunk harry$ cd ..

lottery harry$ svn update
U branches/no_boys_allowed/pb.c
Updated to revision 22.

lottery harry$ cd trunk

trunk harry$ svn merge ../branches/no_boys_allowed/
Conflict discovered in 'pb.c'.
Select: (p) postpone, (df) diff-full, (e) edit,
 (mc) mine-conflict, (tc) theirs-conflict,
 (s) show all options:

Crikey! Conflicts in pb.c again.

trunk harry$ svn diff
Index: pb.c
===
--- pb.c (revision 22)
+++ pb.c (working copy)
@@ -2,6 +2,7 @@
 #include <stdio.h>
 #include <stdlib.h>
 #include <string.h>
+#include <stdbool.h>

 #define LUCKY_NUMBER 7
 #define MAX_WHITE_BALL 59
@@ -57,7 +58,11 @@
 {
 int balls[6];
 int count_balls = 0;
+<<<<<<< .working
 int favourite = 0; // this should be a bool
+=======
+ bool favorite = false;
+>>>>>>> .merge-right.r22

 for (int i=1; i<argc; i++)
 {
@@ -67,7 +72,11 @@
 {
 if (0 == strcmp(arg, "-favourite"))
 {
+<<<<<<< .working
 favourite = 1;
+=======
+ favorite = true;
+>>>>>>> .merge-right.r22
 }
 else
 {

Now this is a sticky wicket! Harry quickly realises this conflict
 needs to be resolved manually by keeping the proper spelling
 but converting the type to bool like Sally did.

trunk harry$ svn diff

Property changes on: .

Modified: svn:mergeinfo
 Merged /branches/no_boys_allowed:r20-22

Index: pb.c
===
--- pb.c (revision 22)
+++ pb.c (working copy)
@@ -2,6 +2,7 @@
 #include <stdio.h>
 #include <stdlib.h>
 #include <string.h>
+#include <stdbool.h>

 #define LUCKY_NUMBER 7
 #define MAX_WHITE_BALL 59
@@ -57,7 +58,7 @@
 {
 int balls[6];
 int count_balls = 0;
- int favourite = 0; // this should be a bool
+ bool favourite = false;

 for (int i=1; i<argc; i++)
 {
@@ -67,7 +68,7 @@
 {
 if (0 == strcmp(arg, "-favourite"))
 {
- favourite = 1;
+ favourite = true;
 }
 else
 {

After manually merging the changes, Harry proceeds to resolve the conflict and commit the merge.

trunk harry$ svn resolve --accept=working pb.c
Resolved conflicted state of 'pb.c'

trunk harry$ svn commit -m "merge, conflicts fixed"
Sending trunk
Sending trunk/pb.c
Transmitting file data .
Committed revision 23.

And all of Futilisoft’s customers lived happily ever after.

Summary

 The following table summarizes all 18 commands for Subversion. See
 Table A.1, “Commands” in Appendix A, Comparison Table for a comparison of
 Subversion’s commands with other tools.

 	Operation	Subversion Command
	Create	svnadmin create
	Checkout	svn checkout
	Commit	svn commit
	Update	svn update
	Add	svn add
	Edit	[a]
	Delete	svn delete
	Rename	svn move
	Move	svn move
	Status	svn status
	Diff	svn diff
	Revert	svn revert
	Log	svn log
	Tag	svn copy[b]
	Branch	svn copy[c]
	Merge	svn merge
	Resolve	svn resolve
	Lock	svn lock
	[a] Automatic: Subversion will notice that the file has changed.

[b] Built on Subversion’s “cheap copy” mechanism. Appears as a directory in the tree. Equivalent to a branch that never gets modified.

[c] Built on Subversion’s “cheap copy” mechanism. Appears as a directory in the tree.

Part II. Distributed Version Control

Chapter 4. More Basics

 Third generation version control tools operate in a manner we
 could describe as distributed or
 decentralized. These DVCS tools build upon
 the same concepts we discussed in Chapter 2, Basics, but
 there are some additional
 nouns and three new verbs (for a total of 21) we need to define.

 Clone

Create a new repository instance that is a copy of another.

 The essential difference between a Centralized Version Control System (CVCS) and
 a DVCS is the notion of a repository instance.

Just like with a CVCS, when a repository is created for the very first
 time, we use create. After that,
 what makes a DVCS different is that we can have multiple instances of that
 repository. The clone operation is the way those new
 instances get created.

 In a CVCS, the
 repository exists in one place on a central server. Every piece
 of software that is used to access the repository includes a
 network client. See Figure 4.1, “Centralized Version Control”.

Figure 4.1. Centralized Version Control

[image: Centralized Version Control]

 In contrast, a DVCS allows the repository to exist in more than one place.
 We can have multiple repository instances. Of course, having more than
 one instance of the repository means that we will need ways of keeping
 them synchronized.

 In fact, not only does a DVCS allow multiple repository instances, it generally
 works that way all the time. Most operations interact with a local repository
 instance, not a network server.
 The only time
 networking code gets involved is when the
 repository instances are being synchronized. Every developer has his own
 private repository instance. The typical situation ends up looking like
 Figure 4.2, “Decentralized Version Control”.

Figure 4.2. Decentralized Version Control

[image: Decentralized Version Control]

 Upon someone’s first exposure to the DVCS concept, it is
 common to hear them express a measure of alarm because they think
 that there will not be a
 central server. But this worry is not necessary. The point of
 multiple repository instances is not to eliminate the central
 server. Rather, the point is
 to get more flexibility.
 With a CVCS, the
 central server is the only repository instance, so it must do
 everything. With a DVCS, we can have repository instances that
 are dedicated
 to specific purposes.

 In practice, virtually all DVCS
 teams have a central server. With a CVCS, a central server happens
 because it is inherent in the centralized model. With a DVCS, a central
 server happens because of the team’s decision to have one.

Push

Copy changesets from a local repository instance to a remote one.

[image: Push]

The push operation is used for synchronization between two
 repository instances. Specifically, this operation happens from the
 perspective of a local repository instance that wants to copy some
 changesets into a remote instance. Usually, the remote instance is the
 one from which the local instance was originally cloned.

Note that the two repository instances are not necessarily identical
 after the push.

 We may have constrained the push by instructing the VCS to only send some of the local changes. Or the remote instance may contain things that are not in
 the local instance.

Pull

Copy changesets from a remote repository instance to a local one.

[image: Pull]

The pull operation is also used for synchronization between two
 repository instances. Specifically, this operation happens from the
 perspective of a local repository instance that wants to copy some
 changesets from a remote repository instance. Usually, the remote instance is the
one from which the local instance was originally cloned.

Note that the two repository instances are not necessarily identical
 after the pull. We may have constrained the pull (by instructing the VCS to only pull some of the remote changes). Or the local instance may contain things that are not in the
 remote instance. In order to completely synchronize two instances,
you would have to pull everything from the remote instance and then push
everything from the local instance.

Directed Acyclic Graphs (DAGs)

 In order to support the ability to push and pull changesets between
 multiple instances of the same repository, we need a specially designed
 structure for representing multiple versions of things. The structure
 we use is called a Directed Acyclic Graph (DAG), a design which is more expressive than a purely linear model. The history of
 everything in the repository is modeled as a DAG.

 Second generation tools tend to model the history of a repository as a line.
 The linear history model is tried and true. History is a sequence of versions, one after the other, as shown in Figure 4.3, “Repository History as a Line”.

Figure 4.3. Repository History as a Line

[image: Repository History as a Line]

To create a new version:

	
 Grab the latest version

	
 Make some changes to it

	
 Check it back in

People like linear history for its simplicity. It provides an unambiguous answer to the question of which version is latest.

But the linear model has one big problem: You can only commit a new version if it was based on the latest version. And this kind of thing happens a lot:

	
 I grab the latest version. At the time I grabbed it, this was version 3.

	
 I make some changes to it.

	
 While I am doing this, somebody commits version 4.

	
 When I go to commit my changes, I can’t, because they are not
 based on the repository’s current version. The parent for my changes was
 version 3 because that’s what was current when I started.

Figure 4.4. Not a Line

[image: Not a Line]

The linear model of history won’t allow me to create version 5 as shown in
 Figure 4.4, “Not a Line”. Instead, a linear history VCS
 requires me to take the changes which were made between versions 3 and 4 and
 apply them to my version. The result is that my working copy’s parent gets changed from
 3 to 4, thus allowing me to commit.

This is unfortunate. My changes were made against version 3, but now
 they are getting blended with the changes from version 4. What if they
 don’t blend well?

The obvious question is: What would happen if we allowed 5 to be checked
 in with 3 as its parent? Our history would no longer be a line. Instead
 it would be a Directed Acyclic Graph (DAG).

A DAG is a data structure from computer science which can be used to model a wide variety of problems. The DAG consists of the following elements:

	

 Nodes. Each node represents some object or piece
 of data. In the case of a DVCS, each node represents one revision
 of the entire repository tree.

	

 Directed edges. A directed edge (or “arrow”) from one node to another represents some kind of
 relationship between those two nodes. In our situation, the arrow
 means “is based on”. By convention, I draw DAG arrows from child
 to parent, from the new revision to the revision from which it was
 derived. Arrows in a DAG may not form a cycle.

	

 A root node. At least one of the nodes will have no parents. This is the
 root of the DAG.

	

 Leaf nodes. One or more of the nodes will have no children. These
 are called leaves or leaf nodes.

A major feature of the DAG model for history is that it doesn’t
 interrupt the developer at the moment she is trying to commit her work.
 In this fashion, the DAG is probably a more pure representation of what
 happens in a team practicing concurrent development. Version 5 was in fact
 based on version 3, so why not just represent that fact?

Well, it turns out there is a darn good reason why not. In the DAG
 above, we don’t know which version is “the latest”. This causes all kinds
 of problems:

	

 Suppose we need the changes in versions 4 and 5 in order to ship our
 release. Currently we can’t have that. There is no version in the
 system that includes both.

	

 Our build system is configured to always build the latest version. What is it supposed to do now?

	

 Even if we build both 4 and 5, which one is QA supposed to test?

	

 If a developer wants to update her working copy to the latest version, which one is it?
 When a developer wants to make some changes, which version should he use as the baseline?

	

 Our project manager wants to know which tasks are done and how much
 work is left to do. His notion of “done” is very closely associated
 with the concept of “latest”. If he can’t figure out which version is
 latest, his brain is likely to just blue screen when he tries to update
 the Gantt chart.

Yep, this is a bad scene. Civilization as we know it will probably just shut down.

In order to avoid dogs and cats living together with mass hysteria, the
 tools that use a DAG model of history provide a way to resolve the mess.
 The answer is the same as it is with linear history. We need a merge. But
 instead of requiring the developer to merge before committing, we allow
 that merge to happen later.

Somebody needs to construct a version which contains all the changes in
 both version 4 and version 5. When this version gets committed, it will
 have arrows pointing to both of its “parents” as shown by version 6 in Figure 4.5, “Sort of like a Line”.

Figure 4.5. Sort of like a Line

[image: Sort of like a Line]

Order has been restored. Once again we know which version is “the latest”. If somebody bothers to reboot the project manager, he will probably realize that this DAG looks almost like a line. Except for that weird stuff happening between versions 3 and 6, it is a line. Best not to lose sleep over it.

What this project manager doesn’t know is that this particular crisis was minor. He thinks that his paradigm has been completely challenged, but one day he’s going to come into his office and find something like the picture in Figure 4.6, “Not even close to being a Line”.

Figure 4.6. Not even close to being a Line

[image: Not even close to being a Line]

Now what?
 If you’re living in the linear history paradigm, this DAG is an absolute
 disaster. It has four leaf nodes. Everything that needs to know which
 version is latest is about to completely fall apart, including the
 aforementioned product manager who is probably now in his office curled up
 in a fetal position and hoping that Mommy included cookies with his
 SpaghettiOs for lunch.

The linear history model is looking pretty good right now. There’s a good reason
 why 99.44% of developers are using a version control tool built on the notion of history as a line.
 (Yes, I made that statistic up.)

 And yet, despite all this apparent chaos, we should remind ourselves
 of the primary benefit of the DAG model: It more accurately describes
 the way developers work. It doesn’t make developers bend to its will
 like the linear model does. When a developer wants to check something
 in, she does, and the DAG merely records what happened.

 Many teams will always prefer the linear history model, even if it requires them to make their development process compatible with it, and there’s nothing
 wrong with that. Life is simpler that way.

 But the DAG model is more flexible and expressive, and many teams
 can benefit from a VCS which has those qualities.

 And for other teams, the DAG model might be coming along simply
 because they want to use a DVCS tool for other reasons. DVCS tools
 use a DAG because they have to. If we can’t assume a live
 connection to a central server, there isn’t any way to force
 developers to make everything fit into the linear model.

 So we need to figure out ways of coping with the DAG. How do we
 do this?

 One way is to reframe every operation. If you tell a doctor that
 “it hurts when I need to know which version is latest”, the doctor
 will tell you to “stop doing that”. Instead, always specify
 exactly which node to use:

	

 The build machine doesn’t build the latest node. Instead, it builds whichever node we tell it to build. Or maybe it builds every node.

	

 QA tests whichever build somebody decides they should test.

	

 Developers don’t update their tree to “the latest”. Instead, they look at the DAG, pick a node, and update to that one.

 I’m not saying this approach is always practical. I am merely observing that
 it is conceptually valid. If you want your DAG to have multiple leaf nodes,
 you can do that.
 As long as you’re willing to specify which
 node you want to use, any operation that needs a node can proceed.

 In practice, the most common solution to this problem is to have stricter
 rules about the shape of the DAG on the central server.
 In other words, developers are allowed to have all manner of DAG chaos in
 their private repository instances, but the DAG on the central server must
 have a single leaf node.

 Typically, a DVCS will warn you if you are attempting
 a push which would make the remote repository’s DAG messy. Users of
 Mercurial and Veracity would typically handle this situation by doing a
 pull, then a merge, and then retrying the push.

 Git users often handle this situation differently, using Git’s rebase
 feature. Rebase is a way of rewriting changesets, replacing them with
 new ones that are exactly equivalent but which have different
 parents. The way this feature is typically used is to rewrite DAG history
 as a line. In other words, even though Git is clearly a third generation
 version control tool, many of its users prefer the cleaner, linear
 history of a second generation tool.

Because Git’s rebase command alters things which have already been
 committed to a repository instance, it often serves as a launching
 point for arguments among DVCS fans with different perspectives on
 the immutability of a repository instance.

One final note about DAGs: It would be conceptually valid to use the
 notion of a DAG to discuss the divergence of any part of a repository.
 However, when we speak of a DAG with respect to a DVCS, we’re talking
 about the whole tree. This is how branching works in DVCS land—each
 node of the DAG is a version of the whole tree. This contrasts with
 CVCS tools where most popular implementations model a branch as
 a directory in the tree which was branched from another directory
 in the tree.

Chapter 5. Advantages

With obvious exceptions like furniture and Star Wars movies, new
 things tend to
 be better than old things. The state of the art advances. An industry’s more recent offerings usually incorporate better technology and practices.

The reason DVCS tools are the third generation of version control is that they are
 in several ways better than the second generation offerings. In this chapter
I will discuss some of the advantages a DVCS can provide over the centralized tools.

Private Workspace

 The concept of a private workspace is central to
 all version control
 tools. Centralized version control systems
 provide developers with a private
 place to work
 by giving them a working copy. A DVCS takes this one step further by
 giving them a private copy of the whole repository.

 Why is the notion of a private workspace so important?

Table 5.1. Lines of Communication

 	People	1	4	10
	 	
 [image: Lines of Communication]

 	
 [image: Lines of Communication]

 	
 [image: Lines of Communication]

	Lines	None	6	45

 The most productive developer is alone. A solitary developer never has
 to worry about coordinating with anyone else. But as soon as the project
 goes plural, there is overhead.[15]
 And for every developer added to the
 team, the overhead gets worse.[16]

 It is the job of the VCS to help manage
 this overhead and minimize the effects. The primary way it achieves
 this goal is to give the developer the ability to pretend, for a little
 while, that he
 is the only member of the team. The VCS provides a private
 workspace.

 Once again, this concept is similar to
 multi-threaded programming, where we get maximum performance when we
 avoid thread synchronization as much as possible. A thread can get
 a lot of work done during the times when it doesn’t have to wait on other
 threads. The
 thread can pretend, for a little while, that it is the only thread in its
 process.

 By giving developers a private copy of the entire repository,
 the DVCS opens up much more flexibility for the kind of things they
 can do in their private workspace. Instead of just
 editing files in the working copy, developers can use all 18 of the
 basic verbs (see Chapter 2, Basics).

 For example, a developer using a DVCS can commit as often she wants.
 The act of committing a change to a repository instance is distinct
 from the act of publishing that change to the rest of the team.
 The developer can pretend, for a little while, that she is the only person
 on the team, deferring the overhead of coordination with others until she
 is ready to push her work to the central server.

[15] It seems wrong to discuss this concept without mentioning “The Mythical Man-Month”, a classic book on software engineering by Fred Brooks.

[16] The function is n*(n-1)/2.

Fast

Developers usually don’t realize how fast a DVCS can be until they’ve tried one—stuff is really,
 really fast when most of your operations are against a local repository instance
 instead of a server. For example, I just ran a quick test
 where I committed the entire valgrind[17] tree (3,143 files; total size
 42 MB) using Subversion and several DVCS tools. The timing results in
 Table 5.2, “Ridiculously Unscientific Benchmarks” show
 that Subversion is way slower than the DVCS crowd.
 Broadly
 speaking, developers who switch from [almost] any CVCS to [almost] any DVCS
 experience performance gains like these for [almost] all daily operations.

Table 5.2. Ridiculously Unscientific Benchmarks

 	Operation	Subversion (svnserve on 127.0.0.1)	Bazaar	Mercurial	Veracity	Git
	Commit	21.9 s	5.2 s	4.6 s	3.7 s	3.2 s[a]
	[a] Nobody ever talks about Git winning any awards for ease of use, but good gracious, it is fast.

[17] http://www.valgrind.org/

Offline

When talking about disconnected operation, the so-called “airplane
 example” is invariably the first thing talked about. Stop me if you’ve
 heard this one, but a developer has to fly across the country and writes
 some code on the plane. Two hours in, at 31,000 feet, he’s finished his
 changes and wants to commit them. With a DVCS, this is possible, since he
 has a
 repository instance on his laptop. How cool is that?!?!?

Well, not really that cool, if we’re honest.
 When it comes right down to it, most programmers don’t fly on airplanes
 very much. When they do fly on airplanes, they use their laptops to watch Han Solo get frozen in carbonite for the 73rd time, not to write code.
 If, by some chance, they do write some code on the plane, it’s not always
 true that they
 actually need to commit the changes. Finally, in 2011, many commercial
 airlines are offering in-flight Wi-Fi. Conclusion: Airplanes are not the
 best metaphor to use when talking about working while disconnected.

The thing I hate most about the metaphor is not its fundamental dumbness
 (though I do hate that plenty), but that disconnected operation is an
 important benefit of a DVCS and the airplane example is a lousy way to
 convince anyone of that fact.

Why does disconnected operation matter? Here’s one simple scenario:
 Suppose you are offline and you want to fix two unrelated bugs and commit them
 in separate changesets. With a second generation tool, you can’t
 commit until you get back online, so both of the bug-fixes are going
 to end up in your pending changeset at the same time.

Fine, so a DVCS is great when you’re offline. But that never
 happens anymore, right?

Actually, it does. If you need Internet access all
 the time, you will quickly discover how often you don’t have it.

I find that Wi-Fi Internet access is like the
 police. It’s everywhere… except when you really need it. Everywhere I go,
 I see cafes with Wi-Fi signs and McDonald’s with Wi-Fi signs and I have a
 laptop, an iPad, and an Android phone that all support Wi-Fi but I still
 have the strong impression that when I really need to use Wi-Fi, it’s not
 there.

This very paragraph is being written at 12:45pm on April 15th, 2011. I am
 sitting in the food court at the mall in Champaign, Illinois. There is
 no Wi-Fi here.

Furthermore, just because I have some
 form of connectivity does
 not mean that I want to be dependent on it. Even more common than “no Wi-Fi” is
 “crappy Wi-Fi” with high latency and packet loss. There are good
 reasons why I may want to do stuff offline and then sync. Peter
 Deutsch wrote about his “fallacies of distributed computing”[18] back in 1994, and they still apply.

We’ve never had more Internet than we have right now, and we
 still don’t have enough.
 There may come a time when offline operation is no longer
 an important part of the DVCS story, but that time is not yet
 here.

[18] http://en.wikipedia.org/wiki/Fallacies_of_Distributed_Computing

Geography

Figure 5.1. Geographically Distributed Teams

[image: Geographically Distributed Teams]

 Consider a development team that is split up in two cities. Half the
 team is in a satellite office in Crabapple Cove, Maine, and the other
 half is at the company’s headquarters in Ottumwa, Iowa.
 With a CVCS, they
 have to pick one city to hold the central server and everybody in
 the other city has to access it over an Internet link.
 With a DVCS (as shown in Figure 5.1, “Geographically Distributed Teams”), they can set up a central
 server in each city and use push and pull to synchronize them whenever
 as they want.

Flexible Workflows

 Geography isn’t the only reason you might want
 to have more than one central server. You might also want to create
 a repository instance to support a specific purpose. Or you might want
 to use named branches to manage simultaneous work on more than one release. Bottom
 line: A DVCS offers incredible flexibility to support any kind of
 workflow your team needs.
 See Chapter 11, Workflows for more information.

Easier Merging

 [image: Easier Merging]

Branching is easy. Merging is hard.

 Branching is like two people going off in their own directions and not collaborating.
 What’s hard about that?

If you think about it, in nature divergence is easier than convergence.
 Literal trees (like oak and maple) branch but they don’t merge.
 When a family enters Disney’s Magic Kingdom theme park, they
 can all run off and do their own thing, or they can spend
 half an hour bickering over which section of the park to see first.

 People using a CVCS tend to avoid branching because most of those
 centralized tools aren’t very good at merging. When they switch to a
 DVCS, they tend to bring that attitude with them, even though it’s not
 really necessary anymore. Decentralized tools are much better at
 merging.

 Why are they better?

	They’re built on a DAG (see the section called “Directed Acyclic Graphs (DAGs)”
 in Chapter 4, More Basics). Merge
 algorithms need good information about history and common
 ancestors. A DAG is a better way to represent that kind of
 information than the techniques used by most centralized
 tools.

	They keep the developer’s intended changes distinct from the merge
 she had to do in order to get those changes committed.
 This approach is less error-prone at commit time, since the
 developer’s changes are already cleanly tucked away in an
 immutable changeset. The only thing that needs to be done is
 the merge itself, so it gets all the attention it needs. Later, when
 tracking down a problem, it is easy to figure out if the
 problem happened during the intended changes or the merge, since
 those two things are distinct in the history.

	They deal with whole-tree branches, not directory branches. The path names in
 the tree are independent of the branch. This improves
 interoperability with other tooling.

Implicit Backup

 [image: Implicit Backupbackup]

 Perhaps I shouldn’t use the word “backup” here. I certainly do not
 mean to imply that using a DVCS means you don’t need to have a backup
 strategy.

 But the central principle of any backup strategy is that your chances
 of losing data go down when you have more copies of it. Some folks
 (including me) do feel better about their version control data when
 using a DVCS because there are multiple instances of the repository. At SourceGear we have a central server with RAID
 and ECC RAM and redundant power supplies and regular backups with
 offsite storage and stuff like
 that. But we get a little extra security knowing that there are dozens
 more live copies of the whole repository regularly being used on other machines.
 Any of them could become the central repository on
 short notice.

Scale out, not just up

 With a CVCS, the server holding the central repository needs
 to be powerful enough to serve the needs of the entire team. For a team
 of 10 people, this is not an issue. For larger teams, the hardware
 limitations of the server can be a performance bottleneck.

Some systems (such as
 IBM Rational ClearCase or Microsoft Team Foundation Server) expect the
 server to do a lot of work.
 It can be challenging and expensive to set up a server to support thousands of users.

[image: Scale out, not just up]

Generally speaking, a DVCS has much more modest hardware requirements for
 a central server.
 Users don’t interact with
 the server unless they need to push or pull. All the heavy lifting happens
 on the client side so the server hardware can be very simple indeed.

 With a DVCS, it is also possible to scale the central server by turning it
 into a server farm. Instead of one large server machine, you can add capacity by adding
 more small server machines, using scripts to keep them all in sync with each other.

Chapter 6. Weaknesses

It’s not all pretty flowers and frolicking deer for
 DVCS systems; there are a few areas where solutions from the CVCS world
 still win.

Before I begin, let me say a word about the freshness date of the
 material in this chapter. As I write this in mid-2011, the
 most popular tools in the DVCS world are Git, Mercurial, and Bazaar. The
 issues mentioned here are common legitimate criticisms heard by
 CVCS users who are evaluating the decentralized model
 for version control. But things are moving very fast.

	Git, Mercurial, and Bazaar all remain under active
 development by very smart people. New and improved versions
 are coming out
 regularly.

	Relatively recent tools like Fossil[19] are bringing new
 ideas.

	All the established CVCS leaders are searching for ways to
 morph their products into a DVCS, or least into some kind of hybrid.
 Nobody knows yet if or when one of these companies will find a
 sweet spot, a CVCS which brings just enough benefits from the DVCS
 architecture.

	
 In the design and implementation of Veracity, some of the
 issues in this chapter have been particular areas of focus for us, areas
 where we want Veracity to go further than previously available solutions.

So the version control arena is in a sea of change right now, but
 I am confident of two things:

 	
 DVCS is the way of the future for version control. This model will become mainstream.

	
 In the DVCS world, the current state of the art is just the beginning.

Locks

 Just as I believe that many software teams should use lock rarely or
 never, I also understand that for some, lock is a critical
 feature. A great example is a team building a game with lots of
 graphical assets kept under version control along with the code.
 With binary files and other cases where automerge cannot work, locking a file is often the
 right way to go.

 For somewhat obvious reasons, there isn’t much support for lock
 in distributed version control. When the system is designed to provide excellent
 support for offline usage, a feature which requires online usage is
 not likely to get much focus.
 Unless and until DVCS tools provide support for lock,
 gaming companies are probably going to stay with centralized tools.

[19] http://www.fossil-scm.org/

Very Large Repositories

Having the whole repository on your laptop is fine if it’s a gigabyte.
 If it’s a terabyte, not so much.

The issue isn’t really disk space. Disk space is as cheap as it’s ever
 been and still getting cheaper. The problem is network speed. If the initial
 clone involves moving 1 TB onto your desktop machine, it’s gonna take
 a while.

The current best practice with a DVCS is to break things up into smaller
 repositories. If you have a single repository that is more than a terabyte in size and
 absolutely cannot be broken up into smaller ones, then you have many, many
 problems. One of those problems is that it will not be feasible for you to
 use a DVCS.

Integration

 Industry-wide, there has been a trend toward more integration between
 version control and other stuff like project tracking, wikis,
 discussion forums, build management, etc. Developers don’t just commit
 code. They use a whole bunch of other tools which help them
 collaborate with each other and with people in other functional
 areas. The expectation is that all these tools will integrate together very well, providing a seamless user experience. This concept is sometimes referred to as Application Lifecycle Management (ALM).

 The rapidly increasing popularity of DVCS is generating
 some momentum
 in the opposite direction. The benefits of a DVCS (such as
 offline usage)
 are somewhat diminished if all of the other tools a developer needs are
 still centralized.

Yes, it’s cool that I can commit my code while I’m on a yacht[20], but how do I
 update the bug tracking system to mark the bug fixed? So far, the answer is that I
 have to wait until the boat gets to shore, hope that the port terminal has Wi-Fi, log in to my
 corporate VPN, bring up a web browser, remember the bug ID, find the bug,
 change its status, and try to remember my code changes so I can write
 something relevant in the comments. That’s not what I want. What I want is to
 do all those things offline to my local clone of the bug tracking database
 and those changes will get pushed at the same time that I push the version
 control stuff.

[20] Certain comments from early reviewers of this book motivate me to clarify that I do not actually have a yacht.

Obliterate

 [image: Obliterateobliterate]

 The “Implicit Backup” idea described in the
 previous chapter
 is a coin with two sides. Having
 lots of copies of the data does reduce the risk of losing that data, but it also
 makes it far more difficult to destroy.

Some version control systems have a way of actually altering the history
 of the repository. There are certain legitimate situations where we want
 to delete something and have it actually be deleted.
 In general, these situations arise when someone has a legal obligation
 to destroy all copies of some piece of data.
 It is insufficient to use the delete operation, since that doesn’t purge the
 data from the repository’s history.
 This
 feature is commonly known as “obliterate”.

 Most version control tools do not support obliterate.
 It is generally agreed
 that the most important trait for a VCS is reliability.
 In the pursuit of reliability, anything which allows the history of
 a repository to be altered
 is at best a distraction and at
 worst, damaging.
 In many cases,
 any provision for the ability to obliterate things would cause the
 overall design to be altered in ways that compromise the performance and
 reliability of all operations.

 As you can tell, I don’t like obliterate much. My company has been
 selling version control tools for over a decade, and our experience in
 providing technical support to our customers shows that obliterate is
 often misused. In my entire career,
 I don’t think I’ve ever found occasion to use obliterate.
 But I concede that there are valid use cases for it, and the presence of multiple repository instances does make things more difficult, so I mention
 it here.

 With a DVCS, obliterating something would look roughly like this:

 	Get one repository instance Q which is complete.
 You’ll need to have every repository instance
 push everything to Q.

	

 Clone Q while excluding the parts you want to obliterate. This
 requires that your DVCS support some kind of a “clone with
 exclude” operation.

	

 Destroy all repository instances, replacing them with
 the clone you just created.

 The difficulty of this recipe is determined primarily by the number of
 repository instances you have. With 10 instances, it’s probably not a
 big problem. With 5,000 instances, you’ve got a major task on your
 hands. Fortunately, the need to obliterate is extremely rare.

 Or at least it should be. If your regular process involves a frequent need to obliterate,
 you should not be using a DVCS. In fact, my opinion would be that
 you should not be using any VCS in that kind of situation.
 You’re doing something that version control tools are not designed
 to do. You don’t need version control. What you need is something
 else, something that is not the subject of this book.

Administration

 A nice thing about a CVCS is that the repository server provides a
 nice centralized place to do administration, including security, access
 control, permissions, management of user accounts, etc.

 Git and Mercurial are a bit weak in the area of administrative features and user accounts.
 Both of
 these tools allow the user to identify himself with any
 string, and that string is recorded in the repository
 history.

Path-Based Access Control

 Decentralized version control tools do not provide a viable way
 to control access to specific files or directories within the repository tree.

 For example, suppose that you want to protect a certain directory
 by preventing certain users from reading its contents. With a CVCS,
 most commands operate on part of the repository. Also, the central server
 is involved with all attempts to read
 repository data. This model makes it straightforward to control access
 by repository tree path.

 With a DVCS, most commands operate upon the entire repository tree.
 Furthermore, a complete clone of the repository is already present on
 the user’s machine—there is no secure way of preventing them
 from reading it.

 Users who choose decentralized version control typically must
 arrange things such that access control on a per-repository
 basis is sufficient.

Ease of Use

 Ease of use is a fairly subjective thing, but I include this
 section here because I believe most people agree that
 a DVCS is somewhat more difficult to use and understand than a CVCS.

Returning once again to my multi-threaded programming comparison, this
 is not entirely unexpected. Concurrency is inherently more difficult.
 Multi-threaded programming is far more challenging than writing code for
 a single isolated thread.

I’ve watched many people climb the DVCS learning curve, and they all seem to stumble on the same obstacles.

	
 How can our team work without a central server? (Answer: You don’t have to.)

	
 With all these repository instances, how do I know which one has the
 official version of our code? (Answer: Whichever one you designate.)

	
 How can it be okay to commit changes without merging them first? (Answer: The DVCS remembers the ancestry of your change and allows you to do the merge later.)

	
 What happened to revision numbers? The version of my tree is e69de29bb2d1d6434b8b29ae775ad8c2e48c5391? What’s up with that? (Answer: The DVCS is using cryptographic hashes to store things by content.)

Most people who reach DVCS enlightenment will agree
 that it was worth the climb.

But it can still make sense for organizations to
 consider things like training costs as they evaluate a transition. I can’t
 express this any better than Greg Hudson did in his 2004 essay[21] “Undiagnosing Subversion”, so I’ll just quote him: “In many
 environments, a shallow learning curve is the most important
 feature of a version control system.”

[21] http://web.mit.edu/ghudson/thoughts/undiagnosing

GUIs

 There are many software developers who strongly prefer
 not to use a command-line interface.
 Most of them stopped reading this book several chapters ago.

 Like it or not, the command-line nature of this book somewhat reflects
 current reality in the DVCS world. I’m not saying there
 are no graphical UIs for the popular DVCS tools. There are plenty of them. But I have the
 strong impression that distributed version control hasn’t got much
 traction yet among developers that don’t use the command line.
 This will change over time.

Chapter 7. Basics with Mercurial

 Futilisoft has begun work on a new product. This product calculates
 the probability (as an integer percentage) of winning the Powerball for any given
 set of numbers.

 The company has assigned two developers to work
 on this new project, Harry, located in Birmingham, England, and Sally,
 located in Birmingham, Alabama. Both developers are telecommuting to
 the Futilisoft corporate headquarters in Cleveland. After a bit of
 discussion, they have decided
 to implement their product as a command-line app in C and to use
 Mercurial[22] 1.7.3 for version control.

[image: Basics with Mercurial]

Create

 Sally gets the project started by creating a new repository.

~ server$ mkdir lottery

~ server$ cd lottery

lottery server$ hg init

lottery server$ hg serve
listening at http://server.futilisoft.com:8000/ (bound to *:8000)

 I consider the details of server configuration to be beyond the scope of this book. Please accept my unsubstantiated claim that it happened. Right here.

[22] http://mercurial-scm.org/

Clone, Add, Status, Commit

 By this time Harry is done dossing about and is ready to
 start coding.

Since this is Harry’s first time using Mercurial, he first sets up his .hgrc file with a user string that will be used to identify his commits in the log.

[ui]
username = Harry <harry@futilisoft.com>

Now he needs to get his own repository instance.

~ harry$ hg clone http://server.futilisoft.com:8000/ ./lottery
no changes found
updating to branch default
0 files updated, 0 files merged, 0 files removed, 0 files unresolved

 Note that Mercurial doesn’t have a Checkout command. It keeps the
 repository instance within the administrative area of the working copy.
 This means you
 can only have one working copy for each repository
 instance.

 Harry wonders if Sally has already done anything in the new repository.

~ harry$ cd lottery

lottery harry$ ls -al
total 0
drwxr-xr-x 3 harry staff 102 May 17 07:55 .
drwxr-xr-x 21 harry staff 714 May 17 07:55 ..
drwxr-xr-x 8 harry staff 272 May 17 07:55 .hg

Apparently not. Nothing here but the .hg
 administrative area.
Jolly good then. It’s time to start coding. He opens his text editor and
 creates the starting point for their product.

#include <stdio.h>
#include <stdlib.h>

int calculate_result(int white_balls[5], int power_ball)
{
 return 0;
}

int main(int argc, char** argv)
{
 if (argc != 7)
 {
 fprintf(stderr, "Usage: %s power_ball (5 white balls)\n", argv[0]);
 return -1;
 }

 int power_ball = atoi(argv[1]);

 int white_balls[5];
 for (int i=0; i<5; i++)
 {
 white_balls[i] = atoi(argv[2+i]);
 }

 int result = calculate_result(white_balls, power_ball);

 printf("%d percent chance of winning\n", result);

 return 0;
}

Typical of most initial implementations, this is missing a lot of
 features. But it’s a good place to begin. Before committing his
code, he wants to make sure it compiles and runs.

lottery harry$ gcc -std=c99 lottery.c

lottery harry$ ls -l
total 32
-rwxr-xr-x 1 harry staff 8904 May 17 07:56 a.out
-rw-r--r-- 1 harry staff 555 May 17 07:56 lottery.c

lottery harry$./a.out
Usage: ./a.out power_ball (5 white balls)

lottery harry$./a.out 42 1 2 3 4 5
0 percent chance of winning

Righto. Time to store this file in the repository.
 First Harry needs to add the file to the pending changeset.

lottery harry$ hg add lottery.c

Harry uses the status operation to make sure the pending changeset looks proper.

lottery harry$ hg status
A lottery.c
? a.out

Mercurial is complaining because it doesn’t know what to do about
 that a.out file. Stiff upper lip and all that. That’s a compiled
 executable, which should not be stored in a version control repository.
 He can just ignore that.[23] Now
 it’s time to commit the file.

lottery harry$ hg commit -m "initial implementation"

[23] Or he could add a.out to his .hgignore file.

Push, Pull, Log, Diff

 Since this is Sally’s first time using Mercurial on her desktop machine, she first sets up her .hgrc file.

[ui]
username = Sally <sally@futilisoft.com>

Now Sally needs to set up her own repository instance.

~ sally$ hg clone http://server.futilisoft.com:8000/ ./lottery
no changes found
updating to branch default
0 files updated, 0 files merged, 0 files removed, 0 files unresolved

~ sally$ cd lottery

lottery sally$ ls -al
total 0
drwxr-xr-x 3 sally staff 102 May 17 08:00 .
drwxr-xr-x 19 sally staff 646 May 17 08:00 ..
drwxr-xr-x 8 sally staff 272 May 17 08:00 .hg

Hmmm. Harry was supposed to commit the initial code, but there’s nothing
here.

But Harry did commit his changes! Why aren’t they here? Ah, he forgot to push. Sally screams at Harry loudly enough to be heard six time zones away.

lottery harry$ hg push
pushing to http://server.futilisoft.com:8000/
searching for changes
remote: adding changesets
remote: adding manifests
remote: adding file changes
remote: added 1 changesets with 1 changes to 1 files

Now Sally can pull.

lottery sally$ hg pull
pulling from http://server.futilisoft.com:8000/
requesting all changes
adding changesets
adding manifests
adding file changes
added 1 changesets with 1 changes to 1 files
(run 'hg update' to get a working copy)

The developers of Mercurial have done a great job on ease of use,
including little prompts like the one I highlighted above.
Mercurial is the friendliest DVCS around.

Now that she has pulled, Sally should have the code, right?

lottery sally$ ls -al
total 0
drwxr-xr-x 3 sally staff 102 May 17 08:00 .
drwxr-xr-x 20 sally staff 680 May 17 08:06 ..
drwxr-xr-x 12 sally staff 408 May 17 08:06 .hg

Hmmm. Still not there. Ah, maybe she needs to hg update the working copy.

lottery sally$ hg update
1 files updated, 0 files merged, 0 files removed, 0 files unresolved

lottery sally$ ls -al
total 8
drwxr-xr-x 4 sally staff 136 May 17 08:07 .
drwxr-xr-x 20 sally staff 680 May 17 08:06 ..
drwxr-xr-x 12 sally staff 408 May 17 08:07 .hg
-rw-r--r-- 1 sally staff 555 May 17 08:07 lottery.c

Now that she has the initial code they had
 previously discussed, Sally is happy as a dead pig in the sunshine.
 She wants to check the log to see the details.

lottery sally$ hg log
changeset: 0:1f8baa59f5a4
tag: tip
user: Harry <harry@futilisoft.com>
date: Tue May 17 07:58:36 2011 -0500
summary: initial implementation

Note the way Mercurial describes this commit: 0:1f8baa59f5a4. At the
lowest level, a Mercurial version ID is a SHA-1 hash, usually displayed in hex with
only its first 12 characters. This is the part after the colon. Before the colon
is a friendlier version number, one which starts at zero and increases by one
with each new version. This is more intuitive, but these version numbers are
valid only in one repository instance.

When Sally decides to take a look at the code, she immediately finds
 something that makes her nervous as a chicken on a conveyor belt. The program expects the red ball number to
 be the first argument, followed by the other five. But in the actual
 lottery, the five white numbers are always drawn and shown first. She
 worries this will be confusing for users so she decides to fix it.
 Fortunately it is only necessary to modify a few lines of main().

 if (argc != 7)
 {
 fprintf(stderr, "Usage: %s (5 white balls) power_ball\n", argv[0]);
 return -1;
 }

 int power_ball = atoi(argv[6]);

 int white_balls[5];
 for (int i=0; i<5; i++)
 {
 white_balls[i] = atoi(argv[1+i]);
 }

Now she uses the status operation to see the pending changes.

lottery sally$ hg status
M lottery.c

No surprise there. Mercurial knows that lottery.c
 has been modified. She wants to double-check by reviewing the actual
 changes.

lottery sally$ hg diff
diff -r 1f8baa59f5a4 lottery.c
--- a/lottery.c Tue May 17 07:58:36 2011 -0500
+++ b/lottery.c Tue May 17 08:09:58 2011 -0500
@@ -11,16 +11,16 @@
 {
 if (argc != 7)
 {
- fprintf(stderr, "Usage: %s power_ball (5 white balls)\n", argv[0]);
+ fprintf(stderr, "Usage: %s (5 white balls) power_ball\n", argv[0]);
 return -1;
 }

- int power_ball = atoi(argv[1]);
+ int power_ball = atoi(argv[6]);

 int white_balls[5];
 for (int i=0; i<5; i++)
 {
- white_balls[i] = atoi(argv[2+i]);
+ white_balls[i] = atoi(argv[1+i]);
 }

 int result = calculate_result(white_balls, power_ball);

Ain’t that the bee’s knees!?!

Update, Commit (with a merge)

Meanwhile, Harry has been coding as well. He heard somebody say that
it’s best to compile with all the warnings turned on, so he decides to give it
a try.

lottery harry$ gcc -std=c99 -Wall -Wextra -Werror lottery.c
cc1: warnings being treated as errors
lottery.c:5: warning: unused parameter 'white_balls'
lottery.c:5: warning: unused parameter 'power_ball'

I say! The code has some warnings. The calculate_result() function
isn’t using its parameters. Harry looks at the situation and realises the
problem immediately: That function should be checking its arguments for
validity! The power ball can be from 1 to 39 inclusive. The white balls can be
1 to 59 inclusive. So he implements the error checking.

int calculate_result(int white_balls[5], int power_ball)
{
 for (int i=0; i<5; i++)
 {
 if (
 (white_balls[i] < 1)
 || (white_balls[i] > 59)
)
 {
 return -1;
 }
 }

 if (
 (power_ball < 1)
 || (power_ball > 39)
)
 {
 return -1;
 }

 return 0;
}

Grand. Let’s see if it compiles.

lottery harry$ gcc -std=c99 -Wall -Wextra -Werror lottery.c

lottery harry$ ls -l
total 32
-rwxr-xr-x 1 harry staff 8904 May 17 08:17 a.out
-rw-r--r-- 1 harry staff 843 May 17 08:16 lottery.c

Quite. But Harry decides to diff before committing, just for good measure.

lottery harry$ hg diff
diff -r 1f8baa59f5a4 lottery.c
--- a/lottery.c Tue May 17 07:58:36 2011 -0500
+++ b/lottery.c Tue May 17 08:17:53 2011 -0500
@@ -4,6 +4,25 @@

 int calculate_result(int white_balls[5], int power_ball)
 {
+ for (int i=0; i<5; i++)
+ {
+ if (
+ (white_balls[i] < 1)
+ || (white_balls[i] > 59)
+)
+ {
+ return -1;
+ }
+ }
+
+ if (
+ (power_ball < 1)
+ || (power_ball > 39)
+)
+ {
+ return -1;
+ }
+
 return 0;
 }

Good show. Time to commit the change.

lottery harry$ hg commit -m "fix some warnings"

No problems there. This time he remembers that he needs to push his changes to the server.

But Sally has been working at the same time and she had her change ready
 to commit and push first.

lottery sally$ hg commit -m "change order of the command line args to be \
 more like what the user will expect"

lottery sally$ hg push
pushing to http://server.futilisoft.com:8000/
searching for changes
remote: adding changesets
remote: adding manifests
remote: adding file changes
remote: added 1 changesets with 1 changes to 1 files

So Harry tries to push his changes.

lottery harry$ hg push
pushing to http://server.futilisoft.com:8000/
searching for changes
abort: push creates new remote heads on branch 'default'!
(you should pull and merge or use push -f to force)

What’s all this then? Mercurial is not allowing Harry to push his
change because it would result in the default branch having two heads.

 This restriction is analogous to the way the second generation tools refuse to
 allow a commit if it was not based on the most recent version in the
 repository. Mercurial allows this behavior to be overridden, but
 for most situations it is friendlier to the other members of the
 team if you do the pull and merge before you push.

Harry uses pull to bring in changes.

lottery harry$ hg pull
pulling from http://server.futilisoft.com:8000/
searching for changes
adding changesets
adding manifests
adding file changes
added 1 changesets with 1 changes to 1 files (+1 heads)
(run 'hg heads' to see heads, 'hg merge' to merge)

Following the instructions from Mercurial’s output, Harry wants
 to see what hg heads has to say.

lottery harry$ hg heads
changeset: 2:7dd1d2434f80
tag: tip
parent: 0:1f8baa59f5a4
user: Sally <sally@futilisoft.com>
date: Tue May 17 08:25:22 2011 -0500
summary: change order of the command line args to be \
 more like what the user will expect

changeset: 1:efcd0b05ec2c
user: Harry <harry@futilisoft.com>
date: Tue May 17 08:24:01 2011 -0500
summary: fix some warnings

Harry wonders why he can’t just update.

lottery harry$ hg update
abort: crosses branches (merge branches or use --check to force update)

That didn’t work. OK, maybe a merge.

lottery harry$ hg merge
merging lottery.c
0 files updated, 1 files merged, 0 files removed, 0 files unresolved
(branch merge, don't forget to commit)

Great! Now the merge is in the working copy.

lottery harry$ hg status
M lottery.c
? a.out

Everything seems to be proper good. Harry wants to see what happened.

lottery harry$ hg diff
diff -r efcd0b05ec2c lottery.c
--- a/lottery.c Tue May 17 08:24:01 2011 -0500
+++ b/lottery.c Tue May 17 08:30:00 2011 -0500
@@ -30,16 +30,16 @@
 {
 if (argc != 7)
 {
- fprintf(stderr, "Usage: %s power_ball (5 white balls)\n", argv[0]);
+ fprintf(stderr, "Usage: %s (5 white balls) power_ball\n", argv[0]);
 return -1;
 }

- int power_ball = atoi(argv[1]);
+ int power_ball = atoi(argv[6]);

 int white_balls[5];
 for (int i=0; i<5; i++)
 {
- white_balls[i] = atoi(argv[2+i]);
+ white_balls[i] = atoi(argv[1+i]);
 }

 int result = calculate_result(white_balls, power_ball);

Interesting. Diff shows Sally’s changes. This is because the diff was
performed against changeset efcd0b05ec2c. Harry types hg parents to see
the version of the tree on which his current pending changeset is based.

lottery harry$ hg parents
changeset: 1:efcd0b05ec2c
user: Harry <harry@futilisoft.com>
date: Tue May 17 08:24:01 2011 -0500
summary: fix some warnings

changeset: 2:7dd1d2434f80
tag: tip
parent: 0:1f8baa59f5a4
user: Sally <sally@futilisoft.com>
date: Tue May 17 08:25:22 2011 -0500
summary: change order of the command line args to be \
 more like what the user will expect

Because it is a merge in progress, his working copy has two parents. The resulting DAG node will have two parents as well.

His code is already committed.
Apparently Mercurial was able to merge Sally’s changes directly into
Harry’s modified copy of the file without any conflicts. Smashing!
Let’s see if it compiles.

lottery harry$ gcc -std=c99 -Wall -Wextra -Werror lottery.c

lottery harry$ ls -l
total 32
-rwxr-xr-x 1 harry staff 8904 May 17 08:34 a.out
-rw-r--r-- 1 harry staff 843 May 17 08:28 lottery.c

Very well then. So Harry is ready to commit the merge.

lottery harry$ hg commit -m "merge"

And now hg parents shows only one node but that node has two
 parents.

lottery harry$ hg parents
changeset: 3:edbf336fe3fa
tag: tip
parent: 1:efcd0b05ec2c
parent: 2:7dd1d2434f80
user: Harry <harry@futilisoft.com>
date: Tue May 17 08:35:28 2011 -0500
summary: merge

And push.

lottery harry$ hg push
pushing to http://server.futilisoft.com:8000/
searching for changes
remote: adding changesets
remote: adding manifests
remote: adding file changes
remote: added 2 changesets with 2 changes to 1 files

Update (with merge)

Meanwhile, Sally is fixin’ to go ahead and add a
 feature that was requested by the sales team: If
 the user chooses the lucky number 7 as the red ball, the chances of
 winning are doubled. Since she is starting a new task, she decides to
 begin with a pull and update to make sure she has the latest code.

lottery sally$ hg pull
pulling from http://server.futilisoft.com:8000/
searching for changes
adding changesets
adding manifests
adding file changes
added 2 changesets with 2 changes to 1 files
(run 'hg update' to get a working copy)

lottery sally$ hg update
1 files updated, 0 files merged, 0 files removed, 0 files unresolved

lottery sally$ hg parents
changeset: 3:edbf336fe3fa
tag: tip
parent: 2:efcd0b05ec2c
parent: 1:7dd1d2434f80
user: Harry <harry@futilisoft.com>
date: Tue May 17 08:35:28 2011 -0500
summary: merge

Then she implements the lucky 7 feature in two shakes of a lamb’s tail by
adding just a few lines
 of new code to main().

lottery sally$ hg diff
diff -r edbf336fe3fa lottery.c
--- a/lottery.c Tue May 17 08:35:28 2011 -0500
+++ b/lottery.c Tue May 17 08:45:34 2011 -0500
@@ -44,6 +44,11 @@

 int result = calculate_result(white_balls, power_ball);

+ if (7 == power_ball)
+ {
+ result = result * 2;
+ }
+
 printf("%d percent chance of winning\n", result);

 return 0;

And commits her change. And pushes it too.

lottery sally$ hg commit -m "lucky 7"

lottery sally$ hg push
pushing to http://server.futilisoft.com:8000/
searching for changes
remote: adding changesets
remote: adding manifests
remote: adding file changes
remote: added 1 changesets with 1 changes to 1 files

Meanwhile, Harry has realised his last change had a bug. He modified
 calculate_result() to return -1 for invalid arguments but he forgot to modify
the caller to handle the error. As a consequence, entering a ball number that is
out of range causes the program to behave improperly.

lottery harry$./a.out 61 2 3 4 5 42
-1 percent chance of winning

The percent chance of winning certainly can’t be a negative number, now can it? So
 Harry adds an extra check for this case.

lottery harry$ hg diff
diff -r edbf336fe3fa lottery.c
--- a/lottery.c Tue May 17 08:35:28 2011 -0500
+++ b/lottery.c Tue May 17 10:15:19 2011 -0500
@@ -44,6 +44,12 @@

 int result = calculate_result(white_balls, power_ball);

+ if (result < 0)
+ {
+ fprintf(stderr, "Invalid arguments\n");
+ return -1;
+ }
+
 printf("%d percent chance of winning\n", result);

 return 0;

And proceeds to commit and push the fix.

lottery harry$ hg commit -m "propagate error code"

lottery harry$ hg push
pushing to http://server.futilisoft.com:8000/
searching for changes
abort: push creates new remote heads on branch 'default'!
(you should pull and merge or use push -f to force)

Blimey! Sally must have pushed a new changeset already. Harry
 once again needs to pull and merge to combine Sally’s changes with his
 own.

lottery harry$ hg pull
pulling from http://server.futilisoft.com:8000/
searching for changes
adding changesets
adding manifests
adding file changes
added 1 changesets with 1 changes to 1 files (+1 heads)
(run 'hg heads' to see heads, 'hg merge' to merge)

lottery harry$ hg merge
merging lottery.c
warning: conflicts during merge.
merging lottery.c failed!
0 files updated, 0 files merged, 0 files removed, 1 files unresolved
use 'hg resolve' to retry unresolved file merges or 'hg update -C .' to abandon

The merge didn’t go quite as smoothly this time.
 Harry wonders if anyone would notice if he were to leg it down to the pub. Apparently there
was a conflict.
Harry decides to
open up lottery.c in his editor to examine the situation.

...
 int result = calculate_result(white_balls, power_ball);

<<<<<<< local
 if (result < 0)
=======
 if (7 == power_ball)
>>>>>>> other
 {
<<<<<<< local
 fprintf(stderr, "Invalid arguments\n");
 return -1;
=======
 result = result * 2;
>>>>>>> other
 }

 printf("%d percent chance of winning\n", result);

 return 0;
...

Mercurial has included both Harry’s code and Sally’s code with conflict
 markers to delimit things. What we want is to include both blocks of code.
 Sally’s new code can simply be
 included right after
Harry’s error checking.

...
 int result = calculate_result(white_balls, power_ball);

 if (result < 0)
 {
 fprintf(stderr, "Invalid arguments\n");
 return -1;
 }

 if (7 == power_ball)
 {
 result = result * 2;
 }

 printf("%d percent chance of winning\n", result);

 return 0;
...

That should take care of the problem. Harry compiles the code to make
 sure and commits the merge.

lottery harry$ hg commit -m "merge"
abort: unresolved merge conflicts (see hg resolve)

Crikey! Now what? Harry fixed the conflict in lottery.c but
Mercurial doesn’t seem to know that. The output suggested hg resolve.

lottery harry$ hg resolve -l
U lottery.c

Ah yes. Harry realises that he forgot to tell Mercurial that he had resolved the conflict.
He
uses resolve to let Mercurial know that the problem has
been dealt with.

lottery harry$ hg resolve -m lottery.c

lottery harry$ hg resolve -l
R lottery.c

There, that looks much better. Harry tries again to commit the merge.

lottery harry$ hg commit -m "merge"

And then to retry the push.

lottery harry$ hg push
pushing to http://server.futilisoft.com:8000/
searching for changes
remote: adding changesets
remote: adding manifests
remote: adding file changes
remote: added 2 changesets with 2 changes to 1 files

And… that’s the last wicket.

Move

 Harry immediately moves on to his next task, which is to restructure
 the tree a bit. He doesn’t want the top level of the repository to
 get too cluttered so he decides to move their vast number of source code files into a src subdirectory.

lottery harry$ mkdir src

lottery harry$ hg move lottery.c src

lottery harry$ hg st
A src/lottery.c
R lottery.c
? a.out

lottery harry$ hg commit -m "dir structure"

lottery harry$ hg push
pushing to http://server.futilisoft.com:8000/
searching for changes
remote: adding changesets
remote: adding manifests
remote: adding file changes
remote: added 1 changesets with 1 changes to 1 files

Sally decides having the number 7 as a constant in the
 code is ugly enough to scare a bulldog off a meat truck. She adds a #define to give it a more meaningful
 name.

lottery sally$ hg diff
diff -r 4031ca2d74bf lottery.c
--- a/lottery.c Tue May 17 11:01:04 2011 -0500
+++ b/lottery.c Tue May 17 11:30:14 2011 -0500
@@ -2,6 +2,8 @@
 #include <stdio.h>
 #include <stdlib.h>

+#define LUCKY_NUMBER 7
+
 int calculate_result(int white_balls[5], int power_ball)
 {
 for (int i=0; i<5; i++)
@@ -50,7 +52,7 @@
 return -1;
 }

- if (7 == power_ball)
+ if (LUCKY_NUMBER == power_ball)
 {
 result = result * 2;
 }

And immediately commits and pushes the change.

lottery sally$ hg commit -m "use a #define for the lucky number"

lottery sally$ hg push
pushing to http://server.futilisoft.com:8000/
searching for changes
abort: push creates new remote heads on branch 'default'!
(you should pull and merge or use push -f to force)

Hmmm. Sally needs to pull and merge before she can push her changes.

lottery sally$ hg pull
pulling from http://server.futilisoft.com:8000/
searching for changes
adding changesets
adding manifests
adding file changes
added 1 changesets with 1 changes to 1 files (+1 heads)
(run 'hg heads' to see heads, 'hg merge' to merge)

She uses hg heads to see about the merge that needs to be done.

lottery sally$ hg heads
changeset: 8:b9ea7a983ae6
tag: tip
parent: 6:4031ca2d74bf
user: Harry <harry@futilisoft.com>
date: Tue May 17 11:24:58 2011 -0500
summary: dir structure

changeset: 7:7492d7fa4427
user: Sally <sally@futilisoft.com>
date: Tue May 17 11:31:26 2011 -0500
summary: use a #define for the lucky number

The hg merge command performs the merge work and leaves the result in her working copy, waiting to be committed.

lottery sally$ hg merge
merging lottery.c and src/lottery.c to src/lottery.c
0 files updated, 1 files merged, 0 files removed, 0 files unresolved
(branch merge, don't forget to commit)

lottery sally$ hg st
M src/lottery.c
R lottery.c
? a.out

And she commits the merge and pushes it up to the server.

lottery sally$ hg commit -m "merge"

lottery sally$ hg push
pushing to http://server.futilisoft.com:8000/
searching for changes
remote: adding changesets
remote: adding manifests
remote: adding file changes
remote: added 2 changesets with 2 changes to 2 files

Rename

 Harry decides the time has come to create a proper
Makefile. And also to gratuitously rename
lottery.c.

lottery harry$ hg add Makefile

lottery harry$ hg rename src/lottery.c src/pb.c

lottery harry$ hg st
A Makefile
A src/pb.c
R src/lottery.c

lottery harry$ hg commit -m "Makefile. and lottery.c was too long to type."

lottery harry$ hg push
pushing to http://server.futilisoft.com:8000/
searching for changes
remote: adding changesets
remote: adding manifests
remote: adding file changes
remote: added 1 changesets with 2 changes to 2 files

Sally maintains her momentum with #define and adds names for the ball ranges.

lottery sally$ hg diff
diff -r c3e40a7996f0 src/lottery.c
--- a/src/lottery.c Tue May 17 11:36:12 2011 -0500
+++ b/src/lottery.c Tue May 17 11:50:23 2011 -0500
@@ -3,6 +3,8 @@
 #include <stdlib.h>

 #define LUCKY_NUMBER 7
+#define MAX_WHITE_BALL 59
+#define MAX_POWER_BALL 39

 int calculate_result(int white_balls[5], int power_ball)
 {
@@ -10,7 +12,7 @@
 {
 if (
 (white_balls[i] < 1)
- || (white_balls[i] > 59)
+ || (white_balls[i] > MAX_WHITE_BALL)
)
 {
 return -1;
@@ -19,7 +21,7 @@

 if (
 (power_ball < 1)
- || (power_ball > 39)
+ || (power_ball > MAX_POWER_BALL)
)
 {
 return -1;

And commits her changes.

lottery sally$ hg commit -m "more #defines"

lottery sally$ hg push
pushing to http://server.futilisoft.com:8000/
searching for changes
abort: push creates new remote heads on branch 'default'!
(you should pull and merge or use push -f to force)

Grrr. That Harry is dumber than a sack full of hammers.

lottery sally$ hg pull
pulling from http://server.futilisoft.com:8000/
searching for changes
adding changesets
adding manifests
adding file changes
added 1 changesets with 2 changes to 2 files (+1 heads)
(run 'hg heads' to see heads, 'hg merge' to merge)

lottery sally$ hg heads
changeset: 11:346dd1ab5474
tag: tip
parent: 9:c3e40a7996f0
user: Harry <harry@futilisoft.com>
date: Tue May 17 11:48:57 2011 -0500
summary: Makefile. and lottery.c was too long to type.

changeset: 10:51a8540dbb7e
user: Sally <sally@futilisoft.com>
date: Tue May 17 11:51:24 2011 -0500
summary: more #defines

lottery sally$ hg merge
merging src/lottery.c and src/pb.c to src/pb.c
1 files updated, 1 files merged, 0 files removed, 0 files unresolved
(branch merge, don't forget to commit)

Note that Mercurial correctly handled this merge, even though the same
file had been modified in one branch and renamed in the other.

lottery sally$ cd ..

lottery sally$ make
gcc -std=c99 -Wall -Wextra -Werror src/pb.c -o pb

lottery sally$ hg commit -m "merge"

lottery sally$ hg push
pushing to http://server.futilisoft.com:8000/
searching for changes
remote: adding changesets
remote: adding manifests
remote: adding file changes
remote: added 2 changesets with 2 changes to 2 files

Delete

Harry wants to get a head start on Zawinski’s Law, so he decides to add
 an IMAP protocol library to their tree.

lottery harry$ hg add libvmime-0.9.1
adding libvmime-0.9.1/AUTHORS
adding libvmime-0.9.1/COPYING
adding libvmime-0.9.1/ChangeLog
adding libvmime-0.9.1/HACKING
adding libvmime-0.9.1/INSTALL
adding libvmime-0.9.1/Makefile.am
...

lottery harry$ hg commit -m "add libvmime so we can do the mail reader feature"

lottery harry$ hg push
pushing to http://server.futilisoft.com:8000/
searching for changes
remote: adding changesets
remote: adding manifests
remote: adding file changes
remote: added 1 changesets with 387 changes to 387 files

Sally does a pull and finds something that makes
 her want to jerk Harry through a knot.

lottery sally$ hg pull
pulling from http://server.futilisoft.com:8000/
searching for changes
adding changesets
adding manifests
adding file changes
added 1 changesets with 387 changes to 387 files
(run 'hg update' to get a working copy)

lottery sally$ hg update
387 files updated, 0 files merged, 0 files removed, 0 files unresolved

Sally remembers that the specification
 says the product isn’t supposed to include a full email reader until the
 next release. For the entire 1.0 development cycle, that third party library is going to be about as useful as a screen door on a submarine. So she deletes it.

lottery sally$ hg remove libvmime-0.9.1
removing libvmime-0.9.1/AUTHORS
removing libvmime-0.9.1/COPYING
removing libvmime-0.9.1/ChangeLog
removing libvmime-0.9.1/HACKING
removing libvmime-0.9.1/INSTALL
removing libvmime-0.9.1/Makefile.am
...

lottery sally$ hg commit -m "no mail reader until 2.0"

lottery sally$ hg push
pushing to http://server.futilisoft.com:8000/
searching for changes
remote: adding changesets
remote: adding manifests
remote: adding file changes
remote: added 1 changesets with 0 changes to 0 files

Revert

 In the Subversion example, this is the place where Sally asks for a lock.
 But Mercurial doesn’t support lock.

Harry updates his repository instance.

lottery harry$ hg pull
pulling from http://server.futilisoft.com:8000/
searching for changes
adding changesets
adding manifests
adding file changes
added 1 changesets with 0 changes to 0 files
(run 'hg update' to get a working copy)

lottery harry$ hg update
0 files updated, 0 files merged, 387 files removed, 0 files unresolved

lottery harry$ ls -l
total 8
-rw-r--r-- 1 harry staff 66 May 17 11:47 Makefile
drwxr-xr-x 3 harry staff 102 May 17 13:58 src

Sod it! That Sally must have her landlady face on. She’s deleted all his email code!
Harry decides to indent[24] pb.c.

lottery harry$ indent src/pb.c

lottery harry$ hg st
M src/pb.c
? pb.c.BAK

This is getting shambolic. Harry calms down and reverts the changes.

lottery harry$ hg revert src/pb.c

lottery harry$ hg st
? pb.c.BAK
? src/pb.c.orig

lottery harry$ rm pb.c.BAK src/pb.c.orig

Sally has
decided to eliminate uses of atoi(), which is deprecated.

lottery sally$ hg diff
diff -r a3a4497e7ff6 src/pb.c
--- a/src/pb.c Tue May 17 14:04:44 2011 -0500
+++ b/src/pb.c Tue May 17 14:10:51 2011 -0500
@@ -43,7 +43,14 @@
 int white_balls[5];
 for (int i=0; i<5; i++)
 {
- white_balls[i] = atoi(argv[1+i]);
+ char* endptr = NULL;
+ long val = strtol(argv[1+i], &endptr, 10);
+ if (*endptr)
+ {
+ fprintf(stderr, "Invalid arguments\n");
+ return -1;
+ }
+ white_balls[i] = (int) val;
 }

 int result = calculate_result(white_balls, power_ball);

lottery sally$ make
gcc -std=c99 -Wall -Wextra -Werror pb.c -o pb

lottery sally$./pb 1 2 3 4 5 6
0 percent chance of winning

lottery sally$./pb 1 2 3e 4 5 6
Invalid arguments

And she commits her changes, easy as dialing BR-549.

lottery sally$ hg commit -m "use strtol. atoi is deprecated."

lottery sally$ hg push
pushing to http://server.futilisoft.com:8000/
searching for changes
remote: adding changesets
remote: adding manifests
remote: adding file changes
remote: added 1 changesets with 1 changes to 1 files

[24] http://en.wikipedia.org/wiki/Indent_(Unix)

Tag

Grieving the loss of his email code, Harry creates a
 tag so he can quickly find it.

lottery harry$ hg log
...
changeset: 13:4ac7113cd126
user: Harry <harry@futilisoft.com>
date: Tue May 17 14:01:51 2011 -0500
summary: add libvmime so we can do the mail reader feature
...

lottery harry$ hg tag -r 4ac7113cd126 just_before_sally_deleted_my_email_code

 Harry could have typed -r 13, using the local revision number instead of the changeset ID.

lottery harry$ hg log
changeset: 16:f282002d72ee
tag: tip
user: Harry <harry@futilisoft.com>
date: Tue May 17 14:14:44 2011 -0500
summary: Added tag just_before_sally_deleted_my_email_code for changeset 4ac7113cd126

changeset: 15:8ac66a135f35
user: Sally <sally@futilisoft.com>
date: Tue May 17 14:11:45 2011 -0500
summary: use strtol. atoi is deprecated.

changeset: 14:a3a4497e7ff6
user: Sally <sally@futilisoft.com>
date: Tue May 17 14:04:44 2011 -0500
summary: no mail reader until 2.0

changeset: 13:4ac7113cd126
tag: just_before_sally_deleted_my_email_code
user: Harry <harry@futilisoft.com>
date: Tue May 17 14:01:51 2011 -0500
summary: add libvmime so we can do the mail reader feature
...

 I gotta admit I’m not too fond of the way Mercurial handles tags. They’re
 stored in a special .hgtags file in the
 version control tree. This means that
 applying a tag causes another commit.
 If you want your continuous integration system
 to apply a tag to mark the revision on which every build is
 done, you have
 to teach it to ignore changesets where nothing happened
 except the addition of a tag; otherwise it’ll tag itself into an
 infinite loop.

lottery harry$ hg push
pushing to http://server.futilisoft.com:8000/
searching for changes
remote: adding changesets
remote: adding manifests
remote: adding file changes
remote: added 1 changesets with 1 changes to 1 files

Sally sees Harry gloating in the company chat room about his
beloved tag, so she does an
 update.

lottery sally$ hg pull
pulling from http://server.futilisoft.com:8000/
searching for changes
adding changesets
adding manifests
adding file changes
added 1 changesets with 1 changes to 1 files
(run 'hg update' to get a working copy)

lottery sally$ hg update
1 files updated, 0 files merged, 0 files removed, 0 files unresolved

lottery sally$ hg parents
changeset: 16:f282002d72ee
tag: tip
user: Harry <harry@futilisoft.com>
date: Tue May 17 14:14:44 2011 -0500
summary: Added tag just_before_sally_deleted_my_email_code for changeset 4ac7113cd126

Sally sees Harry’s tag and rolls her eyes. Fine. Whatever.

Branch

 Sally wants more privacy. She decides to create her own named branch.

lottery sally$ hg branch no_boys_allowed
marked working directory as branch no_boys_allowed

 In its very early days, Mercurial was designed to support branching by having one repository instance per branch. This approach turned out to not be flexible enough, so the developers added named branches, a way of associating a name with a line of development. This approach allows multiple branches to exist within a single repository instance.

Now that Sally is working in her own branch, she feels much more
 productive. She adds support for the “favorite” option. When a user is playing
 her
favorite numbers, her chances of winning should be doubled. In doing this,
she had to rework the way command-line args are parsed.
And she removes an atoi() call she missed last time.
And she restructures all the error checking into one place.

So main() now looks like this:

int main(int argc, char** argv)
{
 int balls[6];
 int count_balls = 0;
 int favorite = 0;

 for (int i=1; i<argc; i++)
 {
 const char* arg = argv[i];

 if ('-' == arg[0])
 {
 if (0 == strcmp(arg, "-favorite"))
 {
 favorite = 1;
 }
 else
 {
 goto usage_error;
 }
 }
 else
 {
 char* endptr = NULL;
 long val = strtol(arg, &endptr, 10);
 if (*endptr)
 {
 goto usage_error;
 }
 balls[count_balls++] = (int) val;
 }
 }

 if (6 != count_balls)
 {
 goto usage_error;
 }

 int power_ball = balls[5];

 int result = calculate_result(balls, power_ball);

 if (result < 0)
 {
 goto usage_error;
 }

 if (LUCKY_NUMBER == power_ball)
 {
 result = result * 2;
 }

 if (favorite)
 {
 result = result * 2;
 }

 printf("%d percent chance of winning\n", result);

 return 0;

usage_error:
 fprintf(stderr, "Usage: %s [-favorite] (5 white balls) power_ball\n", argv[0]);
 return -1;
}

She commits her changes, knowing that the commit will succeed because she
 is working in her private branch.

lottery sally$ hg commit -m "add -favorite and cleanup some other stuff"

lottery sally$ hg push
pushing to http://server.futilisoft.com:8000/
searching for changes
abort: push creates new remote branches: no_boys_allowed!
(use 'hg push --new-branch' to create new remote branches)

Hey! What’s the problem here? Ah, Mercurial just wants Sally to be
more explicit about the fact that she’s creating a new branch.

lottery sally$ hg push --new-branch
pushing to http://server.futilisoft.com:8000/
searching for changes
remote: adding changesets
remote: adding manifests
remote: adding file changes
remote: added 1 changesets with 1 changes to 1 files

Merge (no conflicts)

Meanwhile, over in the default branch, Harry decides the white balls should be sorted before analysing them,
because that’s how they are on the box.

lottery harry$ hg diff
diff -r f282002d72ee src/pb.c
--- a/src/pb.c Tue May 17 14:14:44 2011 -0500
+++ b/src/pb.c Tue May 17 14:26:36 2011 -0500
@@ -6,6 +6,25 @@
 #define MAX_WHITE_BALL 59
 #define MAX_POWER_BALL 39

+static int my_sort_func(const void* p1, const void* p2)
+{
+ int v1 = *((int *) p1);
+ int v2 = *((int *) p2);
+
+ if (v1 < v2)
+ {
+ return -1;
+ }
+ else if (v1 > v2)
+ {
+ return 1;
+ }
+ else
+ {
+ return 0;
+ }
+}
+
 int calculate_result(int white_balls[5], int power_ball)
 {
 for (int i=0; i<5; i++)
@@ -27,6 +46,8 @@
 return -1;
 }

+ qsort(white_balls, 5, sizeof(int), my_sort_func);
+
 return 0;
 }

And he commits the change.

lottery harry$ hg commit -m "sort the white balls"

But now he’s curious about what Sally has been doing. She said he
 wasn’t allowed to commit to her branch but she didn’t say anything about
 looking at it.

lottery harry$ hg log
changeset: 18:3e1b620bb7ad
tag: tip
parent: 16:f282002d72ee
user: Harry <harry@futilisoft.com>
date: Tue May 17 14:27:37 2011 -0500
summary: sort the white balls

changeset: 17:836e4df60a27
branch: no_boys_allowed
user: Sally <sally@futilisoft.com>
date: Tue May 17 14:24:14 2011 -0500
summary: add -favorite and cleanup some other stuff

Interesting. She added the “favorite” feature. Harry decides he wants
 that. So he asks Mercurial to merge stuff from Sally’s branch into
the default branch.

lottery harry$ hg merge -r 836e4df60a27
merging src/pb.c
0 files updated, 1 files merged, 0 files removed, 0 files unresolved
(branch merge, don't forget to commit)

Brilliant! Harry examines pb.c and discovers that it was merged correctly.
 Sally’s “favorite” changes are there and his qsort changes are as well. So he
compiles the code, runs a quick test, and commits the merge.

lottery harry$ make
gcc -std=c99 -Wall -Wextra -Werror pb.c -o pb

lottery harry$./pb -favorite 5 3 33 22 7 31
0 percent chance of winning

lottery harry$ hg commit -m "merge changes from sally"

lottery harry$ hg push
pushing to http://server.futilisoft.com:8000/
searching for changes
remote: adding changesets
remote: adding manifests
remote: adding file changes
remote: added 2 changesets with 2 changes to 1 files

Merge (repeated, no conflicts)

Simultaneously, both Harry and Sally have a crisis of conscience and realize
that their code has no comments at all.

Harry:

lottery harry$ hg diff
diff -r 922ff5acda79 src/pb.c
--- a/src/pb.c Tue May 17 14:31:41 2011 -0500
+++ b/src/pb.c Tue May 17 14:39:21 2011 -0500
@@ -47,6 +47,7 @@
 return -1;
 }

+ // lottery ball numbers are always shown sorted
 qsort(white_balls, 5, sizeof(int), my_sort_func);

 return 0;

lottery harry$ hg commit -m comments

lottery harry$ hg push
pushing to http://server.futilisoft.com:8000/
searching for changes
remote: adding changesets
remote: adding manifests
remote: adding file changes
remote: added 1 changesets with 1 changes to 1 files

And Sally:

lottery sally$ hg diff
diff -r 836e4df60a27 src/pb.c
--- a/src/pb.c Tue May 17 14:24:14 2011 -0500
+++ b/src/pb.c Tue May 17 14:40:27 2011 -0500
@@ -35,7 +35,7 @@
 {
 int balls[6];
 int count_balls = 0;
- int favorite = 0;
+ int favorite = 0; // this should be a bool

 for (int i=1; i<argc; i++)
 {
@@ -69,10 +69,13 @@
 goto usage_error;
 }

+ // the power ball is always the last one given
 int power_ball = balls[5];

 int result = calculate_result(balls, power_ball);

+ // calculate result can return -1 if the ball numbers
+ // are out of range
 if (result < 0)
 {
 goto usage_error;

lottery sally$ hg commit -m comments

lottery sally$ hg push
pushing to http://server.futilisoft.com:8000/
searching for changes
remote: adding changesets
remote: adding manifests
remote: adding file changes
remote: added 1 changesets with 1 changes to 1 files (+1 heads)

Harry decides to try again to merge the changes from Sally’s branch.

lottery harry$ hg heads
changeset: 21:76fcfc4170dc
branch: no_boys_allowed
tag: tip
parent: 17:836e4df60a27
user: Sally <sally@futilisoft.com>
date: Tue May 17 14:44:56 2011 -0500
summary: comments

changeset: 20:6ae39c9ee2e8
user: Harry <harry@futilisoft.com>
date: Tue May 17 14:45:04 2011 -0500
summary: comments

lottery harry$ hg merge -r 21
merging src/pb.c
0 files updated, 1 files merged, 0 files removed, 0 files unresolved
(branch merge, don't forget to commit)

lottery harry$ hg diff
diff -r 6ae39c9ee2e8 src/pb.c
--- a/src/pb.c Tue May 17 14:45:04 2011 -0500
+++ b/src/pb.c Tue May 17 14:47:52 2011 -0500
@@ -57,7 +57,7 @@
 {
 int balls[6];
 int count_balls = 0;
- int favorite = 0;
+ int favorite = 0; // this should be a bool

 for (int i=1; i<argc; i++)
 {
@@ -91,10 +91,13 @@
 goto usage_error;
 }

+ // the power ball is always the last one given
 int power_ball = balls[5];

 int result = calculate_result(balls, power_ball);

+ // calculate result can return -1 if the ball numbers
+ // are out of range
 if (result < 0)
 {
 goto usage_error;

No worries on the merge then. Harry checks to see if everything compiles, and commits the merge.

lottery harry$ make
gcc -std=c99 -Wall -Wextra -Werror pb.c -o pb

lottery harry$ hg commit -m "merge changes from sally"

lottery harry$ hg push
pushing to http://server.futilisoft.com:8000/
searching for changes
remote: adding changesets
remote: adding manifests
remote: adding file changes
remote: added 1 changesets with 1 changes to 1 files (-1 heads)

Merge (conflicts)

 Sally realizes that C99 has a bool type that should have been used.

lottery sally$ hg diff
diff -r 76fcfc4170dc src/pb.c
--- a/src/pb.c Tue May 17 14:44:56 2011 -0500
+++ b/src/pb.c Tue May 17 14:51:23 2011 -0500
@@ -2,6 +2,7 @@
 #include <stdio.h>
 #include <stdlib.h>
 #include <string.h>
+#include <stdbool.h>

 #define LUCKY_NUMBER 7
 #define MAX_WHITE_BALL 59
@@ -35,7 +36,7 @@
 {
 int balls[6];
 int count_balls = 0;
- int favorite = 0; // this should be a bool
+ bool favorite = false;

 for (int i=1; i<argc; i++)
 {
@@ -45,7 +46,7 @@
 {
 if (0 == strcmp(arg, "-favorite"))
 {
- favorite = 1;
+ favorite = true;
 }
 else
 {

And she commits the change to her private branch.

lottery sally$ hg commit -m "use the bool type"

lottery sally$ hg push
pushing to http://server.futilisoft.com:8000/
searching for changes
remote: adding changesets
remote: adding manifests
remote: adding file changes
remote: added 1 changesets with 1 changes to 1 files (+1 heads)

Meanwhile, Harry has been grumbling about Sally’s butchering of the Queen’s English and
 decides to correct the spelling of the word “favourite”.

lottery harry$ hg diff
diff -r e92fd20d2bc8 src/pb.c
--- a/src/pb.c Tue May 17 14:49:12 2011 -0500
+++ b/src/pb.c Tue May 17 14:53:11 2011 -0500
@@ -57,7 +57,7 @@
 {
 int balls[6];
 int count_balls = 0;
- int favorite = 0; // this should be a bool
+ int favourite = 0; // this should be a bool

 for (int i=1; i<argc; i++)
 {
@@ -65,9 +65,9 @@

 if ('-' == arg[0])
 {
- if (0 == strcmp(arg, "-favorite"))
+ if (0 == strcmp(arg, "-favourite"))
 {
- favorite = 1;
+ favourite = 1;
 }
 else
 {
@@ -108,7 +108,7 @@
 result = result * 2;
 }

- if (favorite)
+ if (favourite)
 {
 result = result * 2;
 }
@@ -118,7 +118,7 @@
 return 0;

 usage_error:
- fprintf(stderr, "Usage: %s [-favorite] (5 white balls) power_ball\n", argv[0]);
+ fprintf(stderr, "Usage: %s [-favourite] (5 white balls) power_ball\n", argv[0]);
 return -1;
 }

Feeling quite chuffed about his pedantry,
 Harry proceeds to commit the change.

lottery harry$ hg commit -m "fixed spelling error"

And to once again merge Sally’s changes into the default branch.

lottery harry$ hg merge -r 4f188690b962
merging src/pb.c
warning: conflicts during merge.
merging src/pb.c failed!
0 files updated, 0 files merged, 0 files removed, 1 files unresolved
use 'hg resolve' to retry unresolved file merges or 'hg update -C .' to abandon

Crikey! Conflicts in pb.c again.

lottery harry$ hg diff
diff -r a0c6fdbdd95f src/pb.c
--- a/src/pb.c Tue May 17 14:53:41 2011 -0500
+++ b/src/pb.c Tue May 17 14:55:08 2011 -0500
@@ -2,6 +2,7 @@
 #include <stdio.h>
 #include <stdlib.h>
 #include <string.h>
+#include <stdbool.h>

 #define LUCKY_NUMBER 7
 #define MAX_WHITE_BALL 59
@@ -57,7 +58,11 @@
 {
 int balls[6];
 int count_balls = 0;
+<<<<<<< .working
 int favourite = 0; // this should be a bool
+=======
+ bool favorite = false;
+>>>>>>> .merge-right.r22

 for (int i=1; i<argc; i++)
 {
@@ -67,7 +72,11 @@
 {
 if (0 == strcmp(arg, "-favourite"))
 {
+<<<<<<< .working
 favourite = 1;
+=======
+ favorite = true;
+>>>>>>> .merge-right.r22
 }
 else
 {

That is a spot of bother. Harry quickly realises this conflict
 needs to be resolved manually by keeping the proper spelling
 but converting the type to bool like Sally did.

lottery harry$ hg diff
diff -r a0c6fdbdd95f src/pb.c
--- a/src/pb.c Tue May 17 14:53:41 2011 -0500
+++ b/src/pb.c Tue May 17 14:56:41 2011 -0500
@@ -2,6 +2,7 @@
 #include <stdio.h>
 #include <stdlib.h>
 #include <string.h>
+#include <stdbool.h>

 #define LUCKY_NUMBER 7
 #define MAX_WHITE_BALL 59
@@ -57,7 +58,7 @@
 {
 int balls[6];
 int count_balls = 0;
- int favourite = 0; // this should be a bool
+ bool favourite = false;

 for (int i=1; i<argc; i++)
 {
@@ -67,7 +68,7 @@
 {
 if (0 == strcmp(arg, "-favourite"))
 {
- favourite = 1;
+ favourite = true;
 }
 else
 {

After manually merging the changes, Harry proceeds to resolve the conflict and commit the merge.

lottery harry$ hg resolve -m src/pb.c

lottery harry$ hg commit -m "merge, conflicts fixed"

lottery harry$ hg push
...

And all of Futilisoft’s customers lived happily ever after.

Summary

 The following table summarizes all 21 commands for Mercurial. See
 Table A.1, “Commands” in Appendix A, Comparison Table for a comparison of
 Mercurial’s commands with other tools.

 	Operation	Mercurial Command
	Create	hg init
	Checkout	[a]
	Commit	hg commit
	Update	hg update
	Add	hg add
	Edit	[b]
	Delete	hg remove
	Rename	hg rename
	Move	hg rename
	Status	hg status
	Diff	hg diff
	Revert	hg revert
	Log	hg log
	Tag	hg tag[c]
	Branch	hg branch
	Merge	hg merge
	Resolve	hg resolve
	Lock	[d]
	Clone	hg clone
	Push	hg push
	Pull	hg pull
	[a] N/A: Mercurial keeps the repository instance inside the working copy.

[b] Automatic: Mercurial will notice that the file has changed.

[c] Tags are stored in a version-controlled text file. Causes a commit.

[d] Unsupported

Chapter 8. Basics with Git

 Futilisoft has begun work on a new product. This product calculates
 the probability (as an integer percentage) of winning the Powerball for any given
 set of numbers.

 The company has assigned two developers to work
 on this new project, Harry, located in Birmingham, England, and Sally,
 located in Birmingham, Alabama. Both developers are telecommuting to
 the Futilisoft corporate headquarters in Cleveland. After a bit of
 discussion, they have decided
 to implement their product as a command-line app in C and to use
 Git[25] 1.7.5 for version control.

[image: Basics with Git]

Create

 Sally gets the project started by creating a new repository.

~ server$ mkdir lottery

~ server$ cd lottery

lottery server$ git init --bare lottery.git

 I consider the details of server configuration to be too much detail for this book. Just imagine that it happened. And that nothing went wrong.

[25] http://git-scm.com/

Clone, Add, Status, Commit

 By this time Harry is done faffing about and is ready to
 start coding.

Since this is Harry’s first time using Git, he first sets up his
 .gitconfig file with information that will be used
 to identify his commits in the log.

[user]
 name = Harry
 email = harry@futilisoft.com

Now he needs to get his own repository instance.

~ harry$ git clone http://server.futilisoft.com:8000/ ./lottery
Cloning into lottery...
warning: You appear to have cloned an empty repository.

 Note that Git doesn’t have a checkout command. Or rather, it has git checkout,
 but that command is equivalent to Update.
 Git keeps the
 repository instance within the administrative area of the working copy, so
 git clone actually performs both clone and checkout.

 Harry wonders if Sally has already done anything in the new repository.

~ harry$ ls -al lottery
total 0
drwxr-xr-x 3 harry staff 102 May 17 07:55 .
drwxr-xr-x 21 harry staff 714 May 17 07:55 ..
drwxr-xr-x 8 harry staff 272 May 17 07:55 .git

Apparently not. Nothing here but the .git
 administrative area.
Jolly good then. It’s time to start coding. He opens his text editor and
 creates the starting point for their product.

#include <stdio.h>
#include <stdlib.h>

int calculate_result(int white_balls[5], int power_ball)
{
 return 0;
}

int main(int argc, char** argv)
{
 if (argc != 7)
 {
 fprintf(stderr, "Usage: %s power_ball (5 white balls)\n", argv[0]);
 return -1;
 }

 int power_ball = atoi(argv[1]);

 int white_balls[5];
 for (int i=0; i<5; i++)
 {
 white_balls[i] = atoi(argv[2+i]);
 }

 int result = calculate_result(white_balls, power_ball);

 printf("%d percent chance of winning\n", result);

 return 0;
}

Typical of most initial implementations, this is missing a lot of
 features. But it’s a good place to begin. Before committing his
code, he wants to make sure it compiles and runs.

lottery harry$ gcc -std=c99 lottery.c

lottery harry$ ls -l
total 32
-rwxr-xr-x 1 harry staff 8904 May 17 07:56 a.out
-rw-r--r-- 1 harry staff 555 May 17 07:56 lottery.c

lottery harry$./a.out
Usage: ./a.out power_ball (5 white balls)

lottery harry$./a.out 42 1 2 3 4 5
0 percent chance of winning

Righto. Time to store this file in the repository.
 First Harry needs to
add the file to
the Git staging area (which in Git’s terminology is called the “index”).

 Note that Git’s staging area is similar to my notion of the
 pending changeset, but the semantics are different.
 The pending changeset is a list of changes in the working copy.
 The Git staging area can contain things that are neither in
 the working copy nor the repository instance.

lottery harry$ git add lottery.c

Harry uses the status operation to make sure the pending changeset looks proper.

lottery harry$ git status -s
A lottery.c
?? a.out

Git is complaining because it doesn’t know what to do about
 that a.out file. Don’t panic! That’s a compiled
 executable, which should not be stored in a version control repository.
 He can just ignore that. Now
 it’s time to commit the file.

 In my examples here I am showing git commit used with the -a flag.
 This makes git commit automatically detect modified files, like the other tools covered
 in this book. Without this flag, git wants you to explicitly git add
 any file which has been modified.

lottery harry$ git commit -a -m "initial implementation"
[master (root-commit) 9a0ca10] initial implementation
 1 files changed, 30 insertions(+), 0 deletions(-)
 create mode 100644 lottery.c

Push, Pull, Log, Diff

 Since this is Sally’s first time using Git on her desktop machine, she first sets up her .gitconfig file.

[user]
 name = Sally
 email = sally@futilisoft.com

Now Sally needs to set up her own repository instance.

~ sally$ git clone http://server.futilisoft.com:8000/ ./lottery
Cloning into lottery...
warning: You appear to have cloned an empty repository.

~ sally$ cd lottery

lottery sally$ ls -al
total 0
drwxr-xr-x 3 sally staff 102 May 17 08:00 .
drwxr-xr-x 19 sally staff 646 May 17 08:00 ..
drwxr-xr-x 8 sally staff 272 May 17 08:00 .git

Hmmm. Harry was supposed to commit the initial code, but there’s nothing
here.

But Harry did commit his changes! Why aren’t they here? Ah, he forgot to push. Sally screams at Harry loudly enough to be heard across the Atlantic.

lottery harry$ git push
No refs in common and none specified; doing nothing.
Perhaps you should specify a branch such as 'master'.
fatal: The remote end hung up unexpectedly
error: failed to push some refs to 'http://server.futilisoft.com:8000/lottery'

By default, Git pushes only to matching branches: For every branch
that exists on the local side, the remote side is updated if a branch
of the same name already exists there. This means that
you have to push the branch explicitly the first time.

lottery harry$ git push --all
Counting objects: 3, done.
Compressing objects: 100% (2/2), done.
Writing objects: 100% (3/3), 484 bytes, done.
Total 3 (delta 0), reused 0 (delta 0)
Unpacking objects: 100% (3/3), done.
To http://server.futilisoft.com:8000/lottery
 * [new branch] master -> master

Now Sally can pull.

lottery sally$ git pull
remote: Counting objects: 3, done.
remote: Compressing objects: 100% (2/2), done.
remote: Total 3 (delta 0), reused 0 (delta 0)
Unpacking objects: 100% (3/3), done.
From http://server.futilisoft.com:8000/lottery
 * [new branch] master -> origin/master

Now that she has pulled, Sally has the code.

lottery sally$ ls -al
total 8
drwxr-xr-x 4 sally staff 136 May 17 08:07 .
drwxr-xr-x 20 sally staff 680 May 17 08:06 ..
drwxr-xr-x 12 sally staff 408 May 17 08:07 .git
-rw-r--r-- 1 sally staff 555 May 17 08:07 lottery.c

 Here’s another terminology difference with Git. My definition
 of pull is an operation which pulls changesets into a repository instance
 but does not update the working copy. git pull is
 equivalent to pull followed by update. git fetch is equivalent to pull.

Now that she has the initial code they had
 previously discussed, Sally is happy as a horsefly at the church picnic.
 She wants to check the log to see the details.

lottery sally$ git log
commit bcb39bee268a92a6d2930cc8a27ec3402ebecf0d
Author: Harry <harry@futilisoft.com>
Date: Sat Jun 11 12:55:52 2011 +0200

 initial implementation

Note the way Git describes this commit: bcb39bee268a…. At the
lowest level, a Git version ID is a SHA-1 hash.
Git does support various forms of shorthand syntax, including
unambiguously shortened SHA-1.

When Sally decides to take a look at the code, she immediately finds
 something that makes her nervous as a plump turkey in November. The program expects the red ball number to
 be the first argument, followed by the other five. But in the actual
 lottery, the five white numbers are always drawn and shown first. She
 worries this will be confusing for users so she decides to fix it.
 Fortunately it is only necessary to modify a few lines of main().

 if (argc != 7)
 {
 fprintf(stderr, "Usage: %s (5 white balls) power_ball\n", argv[0]);
 return -1;
 }

 int power_ball = atoi(argv[6]);

 int white_balls[5];
 for (int i=0; i<5; i++)
 {
 white_balls[i] = atoi(argv[1+i]);
 }

Now she uses the status operation to see the pending changes.

lottery sally$ git status -s
 M lottery.c

No surprise there. Git knows that lottery.c
 has been modified. She wants to double-check by reviewing the actual
 changes.

lottery sally$ git diff
diff --git a/lottery.c b/lottery.c
index e59c732..adf47a7 100644
--- a/lottery.c
+++ b/lottery.c
@@ -11,16 +11,16 @@
 {
 if (argc != 7)
 {
- fprintf(stderr, "Usage: %s power_ball (5 white balls)\n", argv[0]);
+ fprintf(stderr, "Usage: %s (5 white balls) power_ball\n", argv[0]);
 return -1;
 }

- int power_ball = atoi(argv[1]);
+ int power_ball = atoi(argv[6]);

 int white_balls[5];
 for (int i=0; i<5; i++)
 {
- white_balls[i] = atoi(argv[2+i]);
+ white_balls[i] = atoi(argv[1+i]);
 }

 int result = calculate_result(white_balls, power_ball);

Ain’t that the bee’s knees!?!

Update, Commit (with a merge)

Meanwhile, Harry has been coding as well. He heard somebody say that
it’s best to compile with all the warnings turned on, so he decides to give it
a try.

lottery harry$ gcc -std=c99 -Wall -Wextra -Werror lottery.c
cc1: warnings being treated as errors
lottery.c:5: warning: unused parameter 'white_balls'
lottery.c:5: warning: unused parameter 'power_ball'

I say! The code has some warnings. The calculate_result() function
isn’t using its parameters. Harry looks at the situation and realises the
problem immediately: That function should be checking its arguments for
validity! The power ball can be from 1 to 39 inclusive. The white balls can be
1 to 59 inclusive. So he implements the error checking.

int calculate_result(int white_balls[5], int power_ball)
{
 for (int i=0; i<5; i++)
 {
 if (
 (white_balls[i] < 1)
 || (white_balls[i] > 59)
)
 {
 return -1;
 }
 }

 if (
 (power_ball < 1)
 || (power_ball > 39)
)
 {
 return -1;
 }

 return 0;
}

Grand. Let’s see if it compiles.

lottery harry$ gcc -std=c99 -Wall -Wextra -Werror lottery.c

lottery harry$ ls -l
total 32
-rwxr-xr-x 1 harry staff 8904 May 17 08:17 a.out
-rw-r--r-- 1 harry staff 843 May 17 08:16 lottery.c

Quite. But Harry decides to diff before committing, just for good measure.

lottery harry$ git diff
diff --git a/lottery.c b/lottery.c
index e59c732..6b1d76a 100644
--- a/lottery.c
+++ b/lottery.c
@@ -4,6 +4,25 @@

 int calculate_result(int white_balls[5], int power_ball)
 {
+ for (int i=0; i<5; i++)
+ {
+ if (
+ (white_balls[i] < 1)
+ || (white_balls[i] > 59)
+)
+ {
+ return -1;
+ }
+ }
+
+ if (
+ (power_ball < 1)
+ || (power_ball > 39)
+)
+ {
+ return -1;
+ }
+
 return 0;
 }

Good show. Time to commit the change.

lottery harry$ git commit -a -m "fix some warnings"
[master 7895c84] fix some warnings
 1 files changed, 19 insertions(+), 0 deletions(-)

No problems there. This time he remembers that he needs to push his changes to the server.

But Sally has been working at the same time and she had her change ready
 to commit and push first.

lottery sally$ git commit -a -m "change order of the command line args to be \
 more like what the user will expect"
[master 37c09ff] change order of the command line args to be more like what the user ...
 1 files changed, 3 insertions(+), 3 deletions(-)

lottery sally$ git push
Counting objects: 6, done.
Compressing objects: 100% (4/4), done.
Writing objects: 100% (6/6), 397 bytes, done.
Total 6 (delta 1), reused 0 (delta 0)
To http://server.futilisoft.com:8000/lottery
 bcb39be..7895c84 master -> master

So Harry tries to push his changes.

lottery harry$ git push
To http://server.futilisoft.com:8000/lottery
 ! [rejected] master -> master (non-fast-forward)
error: failed to push some refs to 'http://server.futilisoft.com:8000/lottery'
To prevent you from losing history, non-fast-forward updates were rejected
Merge the remote changes (e.g. 'git pull') before pushing again. See the
'Note about fast-forwards' section of 'git push --help' for details.

What’s all this then? Git is not allowing Harry to push his
change because Sally has already pushed something to the master
branch.

Harry uses pull to bring in changes.

lottery harry$ git pull
remote: Counting objects: 5, done.
remote: Compressing objects: 100% (2/2), done.
remote: Total 3 (delta 1), reused 0 (delta 0)
Unpacking objects: 100% (3/3), done.
From http://server.futilisoft.com:8000/lottery
 + 7895c84...37c09ff master -> origin/master (forced update)
Auto-merging lottery.c
Merge made by recursive.
 lottery.c | 6 +++---
 1 files changed, 3 insertions(+), 3 deletions(-)

 I don’t like the way Harry did this. He used git pull, which did the merge and committed it without giving Harry a chance to review. Not cool. Harry should have used git pull --no-commit.

Now the merge is done.

lottery harry$ git status -s
?? a.out

Everything seems to be proper good.

lottery harry$ git show -c
commit b19f36cf4dddc2f70a597a0b558cf3be3de205b4
Merge: 7895c84 37c09ff
Author: Harry <harry@futilisoft.com>
Date: Sat Jun 11 14:02:28 2011 +0200

 Merge branch 'master' of http://server.futilisoft.com:8000/lottery

diff --combined lottery.c
index 6b1d76a,adf47a7..22bf053
--- a/lottery.c
+++ b/lottery.c
@@@ -3,25 -3,6 +3,25 @@@

 int calculate_result(int white_balls[5], int power_ball)
 {
 + for (int i=0; i<5; i++)
 + {
 + if (
 + (white_balls[i] < 1)
 + || (white_balls[i] > 59)
 +)
 + {
 + return -1;
 + }
 + }
 +
 + if (
 + (power_ball < 1)
 + || (power_ball > 39)
 +)
 + {
 + return -1;
 + }
 +
 return 0;
 }

@@@ -29,16 -10,16 +29,16 @@@ int main(int argc, char** argv
 {
 if (argc != 7)
 {
- fprintf(stderr, "Usage: %s power_ball (5 white balls)\n", argv[0]);
+ fprintf(stderr, "Usage: %s (5 white balls) power_ball\n", argv[0]);
 return -1;
 }

- int power_ball = atoi(argv[1]);
+ int power_ball = atoi(argv[6]);

 int white_balls[5];
 for (int i=0; i<5; i++)
 {
- white_balls[i] = atoi(argv[2+i]);
+ white_balls[i] = atoi(argv[1+i]);
 }

 int result = calculate_result(white_balls, power_ball);

The merge commit is done.
Apparently Git was able to merge Sally’s changes directly into
Harry’s modified copy of the file without any conflicts. Smashing!
Let’s see if it compiles.

lottery harry$ gcc -std=c99 -Wall -Wextra -Werror lottery.c

lottery harry$ ls -l
total 32
-rwxr-xr-x 1 harry staff 8904 May 17 08:34 a.out
-rw-r--r-- 1 harry staff 843 May 17 08:28 lottery.c

 Harry is checking to see if the merge
 compiles after it has been committed to the repository.
 If it doesn’t compile, he’ll need to alter the repository (which Git allows using git commit --amend).
 Git fans love the ability to alter a repository, rearranging things
 however they want until they push. I understand their perspective and its
 advantages but I still prefer an approach which
 treats anything committed to any repository instance as immutable.

Very well then. So Harry is ready to push the merge.

lottery harry$ git push
Counting objects: 10, done.
Compressing objects: 100% (4/4), done.
Writing objects: 100% (6/6), 717 bytes, done.
Total 6 (delta 2), reused 0 (delta 0)
Unpacking objects: 100% (6/6), done.
To http://server.futilisoft.com:8000/lottery
 37c09ff..b19f36c master -> master

Update (with merge)

Meanwhile, Sally is fixin’ to go ahead and add a
 feature that was requested by the sales team: If
 the user chooses the lucky number 7 as the red ball, the chances of
 winning are doubled. Since she is starting a new task, she decides to
 begin with pull and update to make sure she has the latest code.

lottery sally$ git pull
remote: Counting objects: 10, done.
remote: Compressing objects: 100% (4/4), done.
remote: Total 6 (delta 2), reused 0 (delta 0)
Unpacking objects: 100% (6/6), done.
From http://server.futilisoft.com:8000/lottery
 37c09ff..b19f36c master -> origin/master
Updating 37c09ff..b19f36c
Fast-forward
 lottery.c | 19 +++++++++++++++++++
 1 files changed, 19 insertions(+), 0 deletions(-)

lottery sally$ git show
commit b19f36cf4dddc2f70a597a0b558cf3be3de205b4
Merge: 7895c84 37c09ff
Author: Harry <harry@futilisoft.com>
Date: Sat Jun 11 14:02:28 2011 +0200

 Merge branch 'master' of http://server.futilisoft.com:8000/lottery

Then she implements the lucky 7 feature in two shakes of a lamb’s tail by
adding just a few lines
 of new code to main().

lottery sally$ git diff
index 22bf053..8548299 100644
--- a/lottery.c
+++ b/lottery.c
@@ -44,6 +44,11 @@

 int result = calculate_result(white_balls, power_ball);

+ if (7 == power_ball)
+ {
+ result = result * 2;
+ }
+
 printf("%d percent chance of winning\n", result);

 return 0;

And commits her change. And pushes it too.

lottery sally$ git commit -a -m "lucky 7"
[master b77378f] lucky 7
 1 files changed, 5 insertions(+), 0 deletions(-)

lottery sally$ git push
Counting objects: 5, done.
Compressing objects: 100% (2/2), done.
Writing objects: 100% (3/3), 314 bytes, done.
Total 3 (delta 1), reused 0 (delta 0)
Unpacking objects: 100% (3/3), done.
To http://server.futilisoft.com:8000/lottery
 b19f36c..b77378f master -> master

Meanwhile, Harry has realised his last change had a bug. He modified
 calculate_result() to return -1 for invalid arguments but he forgot to modify
the caller to handle the error. As a consequence, entering a ball number that is
out of range causes the program to behave improperly.

lottery harry$./a.out 61 2 3 4 5 42
-1 percent chance of winning

The percent chance of winning certainly can’t be a negative number, now can it? So
 Harry adds an extra check for this case.

lottery harry$ git diff
diff --git a/lottery.c b/lottery.c
index 22bf053..aad5995 100644
--- a/lottery.c
+++ b/lottery.c
@@ -44,6 +44,12 @@

 int result = calculate_result(white_balls, power_ball);

+ if (result < 0)
+ {
+ fprintf(stderr, "Invalid arguments\n");
+ return -1;
+ }
+
 printf("%d percent chance of winning\n", result);

 return 0;

And proceeds to commit and push the fix.

lottery harry$ git commit -a -m "propagate error code"
[master 2460684] propagate error code
 1 files changed, 6 insertions(+), 0 deletions(-)

lottery harry$ git push
To http://server.futilisoft.com:8000/lottery
 ! [rejected] master -> master (non-fast-forward)
error: failed to push some refs to 'http://server.futilisoft.com:8000/lottery'
To prevent you from losing history, non-fast-forward updates were rejected
Merge the remote changes (e.g. 'git pull') before pushing again. See the
'Note about fast-forwards' section of 'git push --help' for details.
.

Blimey! Sally must have pushed a new changeset already. Harry
 once again needs to pull and merge to combine Sally’s changes with his
 own.

lottery harry$ git pull
remote: Counting objects: 5, done.
remote: Compressing objects: 100% (2/2), done.
remote: Total 3 (delta 1), reused 0 (delta 0)
Unpacking objects: 100% (3/3), done.
From http://server.futilisoft.com:8000/lottery
 b19f36c..b77378f master -> origin/master
Auto-merging lottery.c
CONFLICT (content): Merge conflict in lottery.c
Automatic merge failed; fix conflicts and then commit the result.

The merge didn’t go quite as smoothly this time.
 Harry wonders if anyone would notice if he were to sneak off to the pub. Apparently there
was a conflict.
Harry decides to
open up lottery.c in his editor to examine the situation.

...
 int result = calculate_result(white_balls, power_ball);

<<<<<<< HEAD
 if (result < 0)
 {
 fprintf(stderr, "Invalid arguments\n");
 return -1;
=======
 if (7 == power_ball)
 {
 result = result * 2;
>>>>>>> b77378f6eb0af44468be36a085c3fe06a80e0322
 }

 printf("%d percent chance of winning\n", result);

 return 0;
...

Git has included both Harry’s code and Sally’s code with conflict
 markers to delimit things. What we want is to include both blocks of code.
 Sally’s new code can simply be
 included right after
Harry’s error checking.

...
 int result = calculate_result(white_balls, power_ball);

 if (result < 0)
 {
 fprintf(stderr, "Invalid arguments\n");
 return -1;
 }

 if (7 == power_ball)
 {
 result = result * 2;
 }

 printf("%d percent chance of winning\n", result);

 return 0;
...

That should take care of the problem. Harry compiles the code to make
 sure and then commits the merge.

lottery harry$ git status -s
UU lottery.c
?? a.out

lottery harry$ git status
On branch master
Your branch and 'origin/master' have diverged,
and have 1 and 1 different commit(s) each, respectively.
#
Unmerged paths:
(use "git add/rm <file>..." as appropriate to mark resolution)
#
both modified: lottery.c
#
Untracked files:
(use "git add <file>..." to include in what will be committed)
#
a.out
no changes added to commit (use "git add" and/or "git commit -a")

lottery harry$ git commit -a -m "merge"
[master 05f316d] merge

And then to retry the push.

lottery harry$ git push
Counting objects: 10, done.
Compressing objects: 100% (4/4), done.
Writing objects: 100% (6/6), 573 bytes, done.
Total 6 (delta 2), reused 0 (delta 0)
Unpacking objects: 100% (6/6), done.
To http://server.futilisoft.com:8000/lottery
 b77378f..05f316d master -> master

And… that’s the last wicket.

Move

 Harry immediately moves on to his next task, which is to restructure
 the tree a bit. He doesn’t want the top level of the repository to
 get too cluttered so he decides to move their vast number of source code files into a src subdirectory.

lottery harry$ mkdir src

lottery harry$ git mv lottery.c src

lottery harry$ git status -s
R lottery.c -> src/lottery.c
?? a.out

lottery harry$ git commit -a -m "dir structure"
[master 0171af4] dir structure
 1 files changed, 0 insertions(+), 0 deletions(-)
 rename lottery.c => src/lottery.c (100%)

lottery harry$ git push
Counting objects: 3, done.
Writing objects: 100% (2/2), 223 bytes, done.
Total 2 (delta 0), reused 0 (delta 0)
Unpacking objects: 100% (2/2), done.
To http://server.futilisoft.com:8000/lottery
 05f316d..0171af4 master -> master

Having the number 7 as a constant in the
 code is so ugly it makes Sally’s hair hurt. She adds a #define to give it a more meaningful
 name.

lottery sally$ git diff
diff --git a/lottery.c b/lottery.c
index 8548299..cf21604 100644
--- a/lottery.c
+++ b/lottery.c
@@ -2,6 +2,8 @@
 #include <stdio.h>
 #include <stdlib.h>

+#define LUCKY_NUMBER 7
+
 int calculate_result(int white_balls[5], int power_ball)
 {
 for (int i=0; i<5; i++)
@@ -50,7 +52,7 @@
 return -1;
 }

- if (7 == power_ball)
+ if (LUCKY_NUMBER == power_ball)
 {
 result = result * 2;
 }

And immediately commits and pushes the change.

lottery sally$ git commit -a -m "use a #define for the lucky number"
[master f3988a0] use a #define for the lucky number
 1 files changed, 3 insertions(+), 1 deletions(-)

lottery sally$ git push
To http://server.futilisoft.com:8000/lottery
! [rejected] master -> master (non-fast-forward)
error: failed to push some refs to 'http://server.futilisoft.com:8000/lottery'
To prevent you from losing history, non-fast-forward updates were rejected
Merge the remote changes (e.g. 'git pull') before pushing again. See the
'Note about fast-forwards' section of 'git push --help' for details.

Hmmm. Sally needs to pull and merge before she can push her changes.

lottery sally$ git pull
remote: Counting objects: 12, done.
remote: Compressing objects: 100% (5/5), done.
remote: Total 8 (delta 1), reused 0 (delta 0)
Unpacking objects: 100% (8/8), done.
From http://server.futilisoft.com:8000/lottery
 b77378f..0171af4 master -> origin/master
Auto-merging src/lottery.c
CONFLICT (content): Merge conflict in src/lottery.c
Automatic merge failed; fix conflicts and then commit the result.

Let’s see what the conflict is:

lottery sally$ git diff
diff --cc src/lottery.c
index cf21604,49c6688..0000000
--- a/src/lottery.c
+++ b/src/lottery.c
@@@ -45,7 -43,13 +45,17 @@@ int main(int argc, char** argv

 int result = calculate_result(white_balls, power_ball);

++<<<<<<< HEAD
 + if (LUCKY_NUMBER == power_ball)
++=======
+ if (result < 0)
+ {
+ fprintf(stderr, "Invalid arguments\n");
+ return -1;
+ }
+
+ if (7 == power_ball)
++>>>>>>> 0171af4004103031d2ffb8d26fac0bcc9511060d
 {
 result = result * 2;
 }

 She sees that the problem is easy to resolve.

lottery sally$ git diff
diff --cc src/lottery.c
index cf21604,49c6688..0000000
--- a/src/lottery.c
+++ b/src/lottery.c
@@@ -45,7 -43,13 +45,13 @@@ int main(int argc, char** argv

 int result = calculate_result(white_balls, power_ball);

+ if (result < 0)
+ {
+ fprintf(stderr, "Invalid arguments\n");
+ return -1;
+ }
+
 - if (7 == power_ball)
 + if (LUCKY_NUMBER == power_ball)
 {
 result = result * 2;
 }

And commits and pushes the change.

lottery sally$ git commit -a -m "merge"
[master 0e74df9] merge

lottery sally$ git push
Counting objects: 12, done.
Compressing objects: 100% (4/4), done.
Writing objects: 100% (7/7), 602 bytes, done.
Total 7 (delta 2), reused 0 (delta 0)
Unpacking objects: 100% (7/7), done.
To http://server.futilisoft.com:8000/lottery
 0171af4..0e74df9 master -> master

Rename

 Harry decides the time has come to create a proper
Makefile. And also to gratuitously rename
lottery.c.

lottery harry$ git pull
remote: Counting objects: 12, done.
remote: Compressing objects: 100% (4/4), done.
remote: Total 7 (delta 2), reused 0 (delta 0)
Unpacking objects: 100% (7/7), done.
From http://server.futilisoft.com:8000/lottery
 0171af4..0e74df9 master -> origin/master
Updating 0171af4..0e74df9
Fast-forward
 src/lottery.c | 4 +++-
 1 files changed, 3 insertions(+), 1 deletions(-)

lottery harry$ git add Makefile

lottery harry$ git mv src/lottery.c src/pb.c

lottery harry$ git status -s
A Makefile
R src/lottery.c -> src/pb.c
?? a.out

lottery harry$ git commit -a -m "Makefile. and lottery.c was too long to type."
[master 8e9cb1b] Makefile. and lottery.c was too long to type.
 2 files changed, 4 insertions(+), 0 deletions(-)
 create mode 100644 Makefile
 rename src/{lottery.c => pb.c} (100%)

lottery harry$ git push
Counting objects: 6, done.
Compressing objects: 100% (3/3), done.
Writing objects: 100% (4/4), 399 bytes, done.
Total 4 (delta 0), reused 0 (delta 0)
Unpacking objects: 100% (4/4), done.
To http://server.futilisoft.com:8000/lottery
 0e74df9..8e9cb1b master -> master

Sally maintains her momentum with #define and adds names for the ball ranges.

lottery sally$ git diff
diff --git a/src/lottery.c b/src/lottery.c
index 706851c..9f3ce49 100644
--- a/src/lottery.c
+++ b/src/lottery.c
@@ -3,6 +3,8 @@
 #include <stdlib.h>

 #define LUCKY_NUMBER 7
+#define MAX_WHITE_BALL 59
+#define MAX_POWER_BALL 39

 int calculate_result(int white_balls[5], int power_ball)
 {
@@ -10,7 +12,7 @@
 {
 if (
 (white_balls[i] < 1)
- || (white_balls[i] > 59)
+ || (white_balls[i] > MAX_WHITE_BALL)
)
 {
 return -1;
@@ -19,7 +21,7 @@

 if (
 (power_ball < 1)
- || (power_ball > 39)
+ || (power_ball > MAX_POWER_BALL)
)
 {
 return -1;

And commits her changes.

lottery sally$ git commit -a -m "more #defines"
[master 933ffc3] more #defines
 1 files changed, 4 insertions(+), 2 deletions(-)

lottery sally$ git push
To http://server.futilisoft.com:8000/lottery
 ! [rejected] master -> master (non-fast-forward)
error: failed to push some refs to 'http://server.futilisoft.com:8000/lottery'
To prevent you from losing history, non-fast-forward updates were rejected
Merge the remote changes (e.g. 'git pull') before pushing again. See the
'Note about fast-forwards' section of 'git push --help' for details.

Grrr. That Harry. The brain in his head must be like a BB in a boxcar.

lottery sally$ git pull
remote: Counting objects: 6, done.
remote: Compressing objects: 100% (3/3), done.
remote: Total 4 (delta 0), reused 0 (delta 0)
Unpacking objects: 100% (4/4), done.
From http://server.futilisoft.com:8000/lottery
 0e74df9..8e9cb1b master -> origin/master
Merge made by recursive.
 Makefile | 4 ++++
 src/{lottery.c => pb.c} | 0
 2 files changed, 4 insertions(+), 0 deletions(-)
 create mode 100644 Makefile
 rename src/{lottery.c => pb.c} (100%)

lottery sally$ make
gcc -std=c99 -Wall -Wextra -Werror src/pb.c -o pb

lottery sally$ git push
Counting objects: 12, done.
Compressing objects: 100% (4/4), done.
Writing objects: 100% (7/7), 696 bytes, done.
Total 7 (delta 1), reused 0 (delta 0)
Unpacking objects: 100% (7/7), done.
To http://server.futilisoft.com:8000/lottery
 8e9cb1b..00b1b4f master -> master

Delete

Harry wants to get a head start on Zawinski’s Law, so he decides to add
 an IMAP protocol library to their tree.

lottery harry$ git pull
remote: Counting objects: 12, done.
remote: Compressing objects: 100% (4/4), done.
remote: Total 7 (delta 1), reused 0 (delta 0)
Unpacking objects: 100% (7/7), done.
From http://server.futilisoft.com:8000/lottery
 8e9cb1b..00b1b4f master -> origin/master
Updating 8e9cb1b..00b1b4f
Fast-forward
 src/pb.c | 6 ++++--
 1 files changed, 4 insertions(+), 2 deletions(-)

lottery harry$ git add -v libvmime-0.9.1
add 'libvmime-0.9.1/AUTHORS'
add 'libvmime-0.9.1/COPYING'
add 'libvmime-0.9.1/ChangeLog'
add 'libvmime-0.9.1/HACKING'
add 'libvmime-0.9.1/INSTALL'
add 'libvmime-0.9.1/Makefile.am'
...

lottery harry$ git commit -a -m "add libvmime so we can do the mail reader feature"
[master 5b8342b] add libvmime so we can do the mail reader feature
 443 files changed, 45673 insertions(+), 0 deletions(-)
 create mode 100644 libvmime-0.9.1/AUTHORS
 create mode 100644 libvmime-0.9.1/COPYING
 create mode 100644 libvmime-0.9.1/ChangeLog
 create mode 100644 libvmime-0.9.1/HACKING
 create mode 100644 libvmime-0.9.1/INSTALL
 create mode 100644 libvmime-0.9.1/Makefile.am
...

lottery harry$ git push
Counting objects: 5, done.
Compressing objects: 100% (3/3), done.
Writing objects: 100% (4/4), 446 bytes, done.
Total 4 (delta 0), reused 0 (delta 0)
Unpacking objects: 100% (4/4), done.
To http://server.futilisoft.com:8000/lottery
 00b1b4f..3e04765 master -> master

Sally does a pull and finds something only a little
 better than a sharp stick in the eye.

lottery sally$ git pull
remote: Counting objects: 5, done.
remote: Compressing objects: 100% (3/3), done.
remote: Total 4 (delta 0), reused 0 (delta 0)
Unpacking objects: 100% (4/4), done.
From http://server.futilisoft.com:8000/lottery
 00b1b4f..3e04765 master -> origin/master
Updating 00b1b4f..3e04765
Fast-forward
 443 files changed, 45673 insertions(+), 0 deletions(-)
 create mode 100644 libvmime-0.9.1/AUTHORS
 create mode 100644 libvmime-0.9.1/COPYING
 create mode 100644 libvmime-0.9.1/ChangeLog
 create mode 100644 libvmime-0.9.1/HACKING
 create mode 100644 libvmime-0.9.1/INSTALL
 create mode 100644 libvmime-0.9.1/Makefile.am
...

Sally remembers that the specification
 says the product isn’t supposed to include a full email reader until the
 next release. For the entire 1.0 development cycle, that third party
 library is going to be about as useful as socks on a rooster. So
 she deletes it.

lottery sally$ git rm libvmime-0.9.1
fatal: not removing 'libvmime-0.9.1' recursively without -r

lottery sally$ git rm -r libvmime-0.9.1
rm 'libvmime-0.9.1/AUTHORS'
rm 'libvmime-0.9.1/COPYING'
rm 'libvmime-0.9.1/ChangeLog'
rm 'libvmime-0.9.1/HACKING'
rm 'libvmime-0.9.1/INSTALL'
rm 'libvmime-0.9.1/Makefile.am'
...

lottery sally$ git commit -a -m "no mail reader until 2.0"
[master 3cdcf54] no mail reader until 2.0
 443 files changed, 0 insertions(+), 45673 deletions(-)
 delete mode 100644 libvmime-0.9.1/
 delete mode 100644 libvmime-0.9.1/AUTHORS
 delete mode 100644 libvmime-0.9.1/COPYING
 delete mode 100644 libvmime-0.9.1/ChangeLog
 delete mode 100644 libvmime-0.9.1/HACKING
 delete mode 100644 libvmime-0.9.1/INSTALL
 delete mode 100644 libvmime-0.9.1/Makefile.am
...

lottery sally$ git push
Counting objects: 3, done.
Compressing objects: 100% (2/2), done.
Writing objects: 100% (2/2), 267 bytes, done.
Total 2 (delta 0), reused 0 (delta 0)
Unpacking objects: 100% (2/2), done.
To http://server.futilisoft.com:8000/lottery
 3e04765..3cdcf54 master -> master

Revert

 In the Subversion example, this is the place where Sally asks for a lock.
 But Git doesn’t support lock.

Harry updates his repository instance.

lottery harry$ git pull
remote: Counting objects: 3, done.
remote: Compressing objects: 100% (2/2), done.
Unpacking objects: 100% (2/2), done.
remote: Total 2 (delta 0), reused 0 (delta 0)
From http://server.futilisoft.com:8000/lottery
 3e04765..3cdcf54 master -> origin/master
Updating 3e04765..3cdcf54
Fast-forward
 443 files changed, 0 insertions(+), 45673 deletions(-)
 delete mode 100644 libvmime-0.9.1/
 delete mode 100644 libvmime-0.9.1/AUTHORS
 delete mode 100644 libvmime-0.9.1/COPYING
 delete mode 100644 libvmime-0.9.1/ChangeLog
 delete mode 100644 libvmime-0.9.1/HACKING
 delete mode 100644 libvmime-0.9.1/INSTALL
 delete mode 100644 libvmime-0.9.1/Makefile.am
...

lottery harry$ ls -l
total 8
-rw-r--r-- 1 harry staff 66 May 17 11:47 Makefile
drwxr-xr-x 3 harry staff 102 May 17 13:58 src

Sod it! That Sally must be barmy! She’s deleted all his email code!
Harry decides to indent[26] pb.c.

lottery harry$ indent src/pb.c

lottery harry$ git status -s
 M src/pb.c
? pb.c.BAK

Harry whinges for a while, calms down and reverts the changes.

lottery harry$ git checkout src/pb.c

lottery harry$ git status -s
?? pb.c.BAK

lottery harry$ rm pb.c.BAK

lottery harry$ git status -s

lottery harry$ git status
On branch master
nothing to commit (working directory clean)

 Git doesn’t exactly have a revert command. Or rather, it does, but
 git revert does something else, not what I call revert. To revert
 the contents of a file, Harry uses git checkout filename.

Sally has
decided to eliminate uses of atoi(), which is deprecated.

lottery sally$ git diff
diff --git a/src/pb.c b/src/pb.c
index 9f3ce49..cd378f5 100644
--- a/src/pb.c
+++ b/src/pb.c
@@ -43,7 +43,14 @@
 int white_balls[5];
 for (int i=0; i<5; i++)
 {
- white_balls[i] = atoi(argv[1+i]);
+ char* endptr = NULL;
+ long val = strtol(argv[1+i], &endptr, 10);
+ if (*endptr)
+ {
+ fprintf(stderr, "Invalid arguments\n");
+ return -1;
+ }
+ white_balls[i] = (int) val;
 }

 int result = calculate_result(white_balls, power_ball);

lottery sally$ make
gcc -std=c99 -Wall -Wextra -Werror pb.c -o pb

lottery sally$./pb 1 2 3 4 5 6
0 percent chance of winning

lottery sally$./pb 1 2 3e 4 5 6
Invalid arguments

And she commits her changes, easy as slipping in the mud.

lottery sally$ git commit -a -m "use strtol. atoi is deprecated."
[master 4c75c49] use strtol. atoi is deprecated.
 1 files changed, 8 insertions(+), 1 deletions(-)

lottery sally$ git push
Counting objects: 7, done.
Compressing objects: 100% (3/3), done.
Writing objects: 100% (4/4), 463 bytes, done.
Total 4 (delta 1), reused 0 (delta 0)
Unpacking objects: 100% (4/4), done.
To http://server.futilisoft.com:8000/lottery
 3cdcf54..4c75c49 master -> master

[26] http://en.wikipedia.org/wiki/Indent_(Unix)

Tag

Still mourning the loss of his email code, Harry creates a
 tag so he can more easily access it later.

lottery harry$ git log
...
commit 3e047651520a0232dcb7385d79962e04d529934b
Author: Harry <harry@futilisoft.com>
Date: Sat Jun 11 16:17:11 2011 +0200

 add libvmime so we can do the mail reader feature
...

lottery harry$ git tag just_before_sally_deleted_my_email_code 3e047651

lottery harry$ git tag
just_before_sally_deleted_my_email_code

lottery harry$ git log --decorate
commit 3cdcf5424d79aeebd28fd40e54465914d8a4a73d (HEAD, origin/master, master)
Author: Sally <sally@futilisoft.com>
Date: Sat Jun 11 16:23:16 2011 +0200

 no mail reader until 2.0

commit 3e047651520a0232dcb7385d79962e04d529934b (tag: just_before_sally_...
Author: Harry <harry@futilisoft.com>
Date: Sat Jun 11 16:17:11 2011 +0200

 add libvmime so we can do the mail reader feature
...

Harry wants to share his misery, so he pushes the tag.

lottery harry$ git push origin tag just_before_sally_deleted_my_email_code
Counting objects: 45, done.
Compressing objects: 100% (29/29), done.
Writing objects: 100% (45/45), 4.19 KiB, done.
Total 45 (delta 9), reused 0 (delta 0)
Unpacking objects: 100% (45/45), done.
To http://server.futilisoft.com:8000/lottery
 * [new tag] just_before_sally_deleted_my_email_code -> just_before_sally_...

Sally sees Harry gloating in the company chat room about his
beloved tag, so she wants to see what he did.

lottery sally$ git pull
From http://server.futilisoft.com:8000/lottery
 * [new tag] just_before_sally_deleted_my_email_code -> just_before_sally_...
Already up-to-date.

Sally sees Harry’s tag and rolls her eyes. Fine. Whatever.

Branch

 Sally wants more privacy. She decides to create her own named branch.

lottery sally$ git checkout -b no_boys_allowed
Switched to a new branch 'no_boys_allowed'

Now that Sally is working in her own branch, she feels much more
 productive. She adds support for the “favorite” option. When a user is playing
 her
favorite numbers, her chances of winning should be doubled. In doing this,
she had to rework the way command-line args are parsed.
And she removes an atoi() call she missed last time.
And she restructures all the error checking into one place.

So main() now looks like this:

int main(int argc, char** argv)
{
 int balls[6];
 int count_balls = 0;
 int favorite = 0;

 for (int i=1; i<argc; i++)
 {
 const char* arg = argv[i];

 if ('-' == arg[0])
 {
 if (0 == strcmp(arg, "-favorite"))
 {
 favorite = 1;
 }
 else
 {
 goto usage_error;
 }
 }
 else
 {
 char* endptr = NULL;
 long val = strtol(arg, &endptr, 10);
 if (*endptr)
 {
 goto usage_error;
 }
 balls[count_balls++] = (int) val;
 }
 }

 if (6 != count_balls)
 {
 goto usage_error;
 }

 int power_ball = balls[5];

 int result = calculate_result(balls, power_ball);

 if (result < 0)
 {
 goto usage_error;
 }

 if (LUCKY_NUMBER == power_ball)
 {
 result = result * 2;
 }

 if (favorite)
 {
 result = result * 2;
 }

 printf("%d percent chance of winning\n", result);

 return 0;

usage_error:
 fprintf(stderr, "Usage: %s [-favorite] (5 white balls) power_ball\n", argv[0]);
 return -1;
}

She commits her changes, knowing that the commit will succeed because she
 is working in her private branch.

lottery sally$ git commit -a -m "add -favorite and cleanup some other stuff"
[no_boys_allowed 02f9797] add -favorite and cleanup some other stuff
 1 files changed, 43 insertions(+), 18 deletions(-)

lottery sally$ git push
Everything up-to-date

Hey! What’s the problem here? Ah, Git just wants Sally to be
more explicit about the fact that she’s pushing a new branch.

lottery sally$ git push origin no_boys_allowed
Counting objects: 7, done.
Compressing objects: 100% (3/3), done.
Writing objects: 100% (4/4), 705 bytes, done.
Total 4 (delta 1), reused 0 (delta 0)
Unpacking objects: 100% (4/4), done.
To http://server.futilisoft.com:8000/lottery
 * [new branch] no_boys_allowed -> no_boys_allowed

Merge (no conflicts)

Meanwhile, over in the default branch, Harry decides the white balls
should be sorted before analysing them, because that’s how they are on the telly.

lottery harry$ git diff
diff --git a/src/pb.c b/src/pb.c
index 9f3ce49..45c5730 100644
--- a/src/pb.c
+++ b/src/pb.c
@@ -6,6 +6,25 @@
 #define MAX_WHITE_BALL 59
 #define MAX_POWER_BALL 39

+static int my_sort_func(const void* p1, const void* p2)
+{
+ int v1 = *((int *) p1);
+ int v2 = *((int *) p2);
+
+ if (v1 < v2)
+ {
+ return -1;
+ }
+ else if (v1 > v2)
+ {
+ return 1;
+ }
+ else
+ {
+ return 0;
+ }
+}
+
 int calculate_result(int white_balls[5], int power_ball)
 {
 for (int i=0; i<5; i++)
@@ -27,6 +46,8 @@
 return -1;
 }

+ qsort(white_balls, 5, sizeof(int), my_sort_func);
+
 return 0;
 }

lottery harry$ git commit -a -m "sort the white balls"
[master eabf466] sort the white balls
 1 files changed, 20 insertions(+), 0 deletions(-)

But now he’s curious about what Sally has been doing. She said he
 wasn’t allowed to commit to her branch but she didn’t say anything about
 looking at it.

lottery harry$ git fetch
remote: Counting objects: 11, done.
remote: Compressing objects: 100% (6/6), done.
remote: Total 8 (delta 2), reused 0 (delta 0)
Unpacking objects: 100% (8/8), done.
From http://server.futilisoft.com:8000/lottery
 * [new branch] no_boys_allowed -> origin/no_boys_allowed

lottery harry$ git log ..origin/no_boys_allowed
commit 02f97979589ee827dfa3f4cfb662eb246b48d919
Author: Sally <sally@futilisoft.com>
Date: Sat Jun 11 17:55:35 2011 +0200

 add -favorite and cleanup some other stuff

Interesting. She added the “favorite” feature. Harry decides he wants
 that. So he asks Git to merge stuff from Sally’s branch into
the default branch.

lottery harry$ git merge origin/no_boys_allowed
Auto-merging src/pb.c
Merge made by recursive.
 src/pb.c | 61 +++------------------
 1 files changed, 43 insertions(+), 18 deletions(-)

Brilliant! Harry examines pb.c and discovers that it was merged correctly.
 Sally’s “favorite” changes are there and his qsort changes are as well. So he
compiles the code, runs a quick test, and commits the merge.

lottery harry$ make
gcc -std=c99 -Wall -Wextra -Werror pb.c -o pb

lottery harry$./pb -favorite 5 3 33 22 7 31
0 percent chance of winning

lottery harry$ git push
Counting objects: 14, done.
Compressing objects: 100% (6/6), done.
Writing objects: 100% (8/8), 1.06 KiB, done.
Total 8 (delta 2), reused 0 (delta 0)
Unpacking objects: 100% (8/8), done.
To http://server.futilisoft.com:8000/lottery
 4c75c49..df43333 master -> master

Merge (repeated, no conflicts)

Simultaneously, both Harry and Sally realize that their code has no comments.

Harry:

lottery harry$ git diff
diff --git a/src/pb.c b/src/pb.c
index 961c1f2..f7d0b61 100644
--- a/src/pb.c
+++ b/src/pb.c
@@ -47,6 +47,7 @@
 return -1;
 }

+ // lottery ball numbers are always shown sorted
 qsort(white_balls, 5, sizeof(int), my_sort_func);

 return 0;

lottery harry$ git commit -a -m comments
[master 571e482] comments
 1 files changed, 1 insertions(+), 0 deletions(-)

lottery harry$ git push
Counting objects: 7, done.
Compressing objects: 100% (3/3), done.
Writing objects: 100% (4/4), 388 bytes, done.
Total 4 (delta 1), reused 0 (delta 0)
Unpacking objects: 100% (4/4), done.
To http://server.futilisoft.com:8000/lottery
 df43333..571e482 master -> master

And Sally:

lottery sally$ git diff
diff --git a/src/pb.c b/src/pb.c
index ad680c7..7881352 100644
--- a/src/pb.c
+++ b/src/pb.c
@@ -35,7 +35,7 @@
 {
 int balls[6];
 int count_balls = 0;
- int favorite = 0;
+ int favorite = 0; // this should be a bool

 for (int i=1; i<argc; i++)
 {
@@ -69,10 +69,13 @@
 goto usage_error;
 }

+ // the power ball is always the last one given
 int power_ball = balls[5];

 int result = calculate_result(balls, power_ball);

+ // calculate result can return -1 if the ball numbers
+ // are out of range
 if (result < 0)
 {
 goto usage_error;

lottery sally$ git commit -a -m comments
[no_boys_allowed 7570e84] comments
 1 files changed, 4 insertions(+), 1 deletions(-)

lottery sally$ git push
Counting objects: 7, done.
Compressing objects: 100% (3/3), done.
Writing objects: 100% (4/4), 474 bytes, done.
Total 4 (delta 1), reused 0 (delta 0)
Unpacking objects: 100% (4/4), done.
To http://server.futilisoft.com:8000/lottery
 02f9797..7570e84 no_boys_allowed -> no_boys_allowed
 ! [rejected] master -> master (non-fast-forward)
error: failed to push some refs to 'http://server.futilisoft.com:8000/lottery'
To prevent you from losing history, non-fast-forward updates were rejected
Merge the remote changes (e.g. 'git pull') before pushing again. See the
'Note about fast-forwards' section of 'git push --help' for details.

 Sally notices that the push of her private branch succeeded.
 Git seems to be griping about something else, related to the
 master branch. She thinks it best that she just ignore it.

 That error message
 is Git’s way of saying the master branch in
 Sally’s repository instance is out of date.

Harry decides to try again to merge the changes from Sally’s branch.

lottery harry$ git pull
remote: Counting objects: 7, done.
remote: Compressing objects: 100% (3/3), done.
remote: Total 4 (delta 1), reused 0 (delta 0)
Unpacking objects: 100% (4/4), done.
From http://server.futilisoft.com:8000/lottery
 02f9797..7570e84 no_boys_allowed -> origin/no_boys_allowed
Already up-to-date.

lottery harry$ git merge origin/no_boys_allowed
Auto-merging src/pb.c
Merge made by recursive.
 src/pb.c | 5 ++++-
 1 files changed, 4 insertions(+), 1 deletions(-)

No worries on the merge then. Harry checks to see if everything compiles.

lottery harry$ make
gcc -std=c99 -Wall -Wextra -Werror pb.c -o pb

lottery harry$ git push
Counting objects: 10, done.
Compressing objects: 100% (3/3), done.
Unpacking objects: 100% (4/4), done.
Writing objects: 100% (4/4), 541 bytes, done.
Total 4 (delta 1), reused 0 (delta 0)
To http://server.futilisoft.com:8000/lottery
 571e482..31b9ef7 master -> master

Merge (conflicts)

 Sally realizes that C99 has a bool type that should have been used.

lottery sally$ git diff
diff --git a/src/pb.c b/src/pb.c
index 7881352..3351455 100644
--- a/src/pb.c
+++ b/src/pb.c
@@ -2,6 +2,7 @@
 #include <stdio.h>
 #include <stdlib.h>
 #include <string.h>
+#include <stdbool.h>

 #define LUCKY_NUMBER 7
 #define MAX_WHITE_BALL 59
@@ -35,7 +36,7 @@
 {
 int balls[6];
 int count_balls = 0;
- int favorite = 0; // this should be a bool
+ bool favorite = false;

 for (int i=1; i<argc; i++)
 {
@@ -45,7 +46,7 @@
 {
 if (0 == strcmp(arg, "-favorite"))
 {
- favorite = 1;
+ favorite = true;
 }
 else
 {

And she commits the change to her private branch.

lottery sally$ git commit -a -m "use the bool type"
[no_boys_allowed a1d4dcf] use the bool type
 1 files changed, 4 insertions(+), 2 deletions(-)

lottery sally$ git push origin HEAD
Counting objects: 7, done.
Compressing objects: 100% (3/3), done.
Writing objects: 100% (4/4), 406 bytes, done.
Total 4 (delta 1), reused 0 (delta 0)
Unpacking objects: 100% (4/4), done.
To http://server.futilisoft.com:8000/lottery
 7570e84..a1d4dcf HEAD -> no_boys_allowed

Meanwhile, Harry has been grumbling about Sally’s butchering of the Queen’s English and
 decides to correct the spelling of the word “favourite”.

lottery harry$ git diff
diff --git a/src/pb.c b/src/pb.c
index 0cecd1c..4d28bbb 100644
--- a/src/pb.c
+++ b/src/pb.c
@@ -57,7 +57,7 @@
 {
 int balls[6];
 int count_balls = 0;
- int favorite = 0; // this should be a bool
+ int favourite = 0; // this should be a bool

 for (int i=1; i<argc; i++)
 {
@@ -65,9 +65,9 @@

 if ('-' == arg[0])
 {
- if (0 == strcmp(arg, "-favorite"))
+ if (0 == strcmp(arg, "-favourite"))
 {
- favorite = 1;
+ favourite = 1;
 }
 else
 {
@@ -108,7 +108,7 @@
 result = result * 2;
 }

- if (favorite)
+ if (favourite)
 {
 result = result * 2;
 }
@@ -118,7 +118,7 @@
 return 0;

 usage_error:
- fprintf(stderr, "Usage: %s [-favorite] (5 white balls) power_ball\n", argv[0]);
+ fprintf(stderr, "Usage: %s [-favourite] (5 white balls) power_ball\n", argv[0]);
 return -1;
 }

Feeling quite chuffed about his pedantry,
 Harry proceeds to commit the change.

lottery harry$ git commit -a -m "fixed spelling error"
[master f822657] fixed spelling error
 1 files changed, 5 insertions(+), 5 deletions(-)

And to once again merge Sally’s changes into the default branch.

lottery harry$ git fetch
remote: Counting objects: 7, done.
remote: Compressing objects: 100% (3/3), done.
remote: Total 4 (delta 1), reused 0 (delta 0)
Unpacking objects: 100% (4/4), done.
From http://server.futilisoft.com:8000/lottery
 7570e84..a1d4dcf no_boys_allowed -> origin/no_boys_allowed

lottery harry$ git merge origin/no_boys_allowed
Auto-merging src/pb.c
CONFLICT (content): Merge conflict in src/pb.c
Automatic merge failed; fix conflicts and then commit the result.

Crikey! Conflicts in pb.c again.

lottery harry$ git diff
diff --cc src/pb.c
index 4d28bbb,3351455..0000000
--- a/src/pb.c
+++ b/src/pb.c
@@@ -1,6 -1,7 +1,10 @@@
 #include <stdio.h>
 #include <stdlib.h>
 #include <string.h>
++<<<<<<< HEAD
++=======
+ #include <stdbool.h>
++>>>>>>> origin/no_boys_allowed

 #define LUCKY_NUMBER 7
 #define MAX_WHITE_BALL 59
@@@ -55,7 -35,7 +59,11 @@@ int main(int argc, char** argv
 {
 int balls[6];
 int count_balls = 0;
++<<<<<<< HEAD
 + int favourite = 0; // this should be a bool
++=======
+ bool favorite = false;
++>>>>>>> origin/no_boys_allowed

 for (int i=1; i<argc; i++)
 {
@@@ -63,9 -43,9 +71,13 @@@

 if ('-' == arg[0])
 {
 - if (0 == strcmp(arg, "-favorite"))
 + if (0 == strcmp(arg, "-favourite"))
 {
++<<<<<<< HEAD
 + favourite = 1;
++=======
+ favorite = true;
++>>>>>>> origin/no_boys_allowed
 }
 else
 {

That is a sticky wicket. Harry quickly realises this conflict
 needs to be resolved manually by keeping the proper spelling
 but converting the type to bool like Sally did.

lottery harry$ git diff
diff --cc src/pb.c
index 4d28bbb,3351455..0000000
--- a/src/pb.c
+++ b/src/pb.c
@@@ -55,7 -35,7 +56,7 @@@ int main(int argc, char** argv
 {
 int balls[6];
 int count_balls = 0;
- int favourite = 0; // this should be a bool
 - bool favorite = false;
++ bool favourite = false;

 for (int i=1; i<argc; i++)
 {
@@@ -63,9 -43,9 +64,9 @@@

 if ('-' == arg[0])
 {
 - if (0 == strcmp(arg, "-favorite"))
 + if (0 == strcmp(arg, "-favourite"))
 {
- favourite = 1;
 - favorite = true;
++ favourite = true;
 }
 else
 {

After manually merging the changes, Harry proceeds to resolve the conflict and commit the merge.

lottery harry$ git commit -a -m "merge, conflicts fixed"
[master b5480ab] merge, conflicts fixed

lottery harry$ git push
...

And all of Futilisoft’s customers lived happily ever after.

Summary

 The following table summarizes all 21 commands for Git. See
 Table A.1, “Commands” in Appendix A, Comparison Table for a comparison of
 Git’s commands with other tools.

 	Operation	Git Command
	Create	git init
	Checkout	[a]
	Commit	git commit -a[b]
	Update	git checkout[c]
	Add	git add[d]
	Edit	git add[e]
	Delete	git rm
	Rename	git mv
	Move	git mv
	Status	git status
	Diff	git diff
	Revert	git checkout[f]
	Log	git log
	Tag	git tag
	Branch	git branch
	Merge	git merge
	Resolve	[g]
	Lock	[h]
	Clone	git clone
	Push	git push
	Pull	git fetch[i]

	[a] N/A: Git keeps the repository instance inside the working copy.

[b] Without the -a flag, git will commit only those changes
 which have been explicitly added to its
 staging area.

[c] Git automatically updates the working copy as part of a git pull.

[d] git add is also used to add any sort of change to the staging area.

[e] Or use git commit -a

[f]
 git revert is a completely different command, used
 to alter changesets that have already been committed.

[g] N/A

[h] Unsupported

[i]
 git fetch implements the behavior I describe as pull; git pull is equivalent to pull followed by update.

Chapter 9. About Veracity

As of mid-2011, Veracity is a new entry in the DVCS world while
 Git and Mercurial are already very popular. Some folks wonder how
 Veracity is different from these other fine tools, so this chapter offers a list of differences. Not everything
 here should be considered an area where Veracity is better, at least
 not for all situations. I’m just highlighting differences.

Figure 9.1. Veracity Architecture

[image: Veracity Architecture]

Decentralized Database

Like any DVCS, Veracity supports versioning of trees, composed of
 directories and files, with pushing, pulling, and merging of changesets between
 repository instances.

In addition to trees, Veracity supports the same functionality for
 databases, composed of records and fields, with
 pushing, pulling, and merging of changesets between repository
 instances.

Veracity’s decentralized database is used for
 user accounts, audit records, tags, and commit messages. This
 database is also the platform on which we are building features like
 bug tracking and build management.

User Accounts

 Building on its decentralized database, Veracity has support
 for user accounts, which can be used for administrative functions
 such as configuring permissions.
 All repository changes are audited
 with a timestamp and the userid of the person who made the change.

Commercial Open Source

 Like Mercurial and Git, Veracity
 is open source. Unlike Mercurial and Git, Veracity is not a
 community-driven project.

SourceGear certainly values cooperation at the community level, but
 Veracity started out very differently from the way
 Mercurial and Git did.

Both Mercurial and Git were born when the Linux kernel team decided to
 stop using BitKeeper[27]. They were created primarily to meet the needs of
 community open source developers.

In contrast, Veracity has (so far) been built entirely by developers
 employed by SourceGear. It was created primarily to
 bring the DVCS concept to mainstream corporate development teams.

[27] http://www.bitkeeper.com/

Designed for Integration

 Enterprise customers value the ability to customize
 and integrate the software they use. Regardless of what
 product they are evaluating, they ask questions about how
 it can be made to work together with all of their
 other systems. It is not uncommon for these kinds
 of companies to spend millions of dollars per year to
 develop and maintain a set of scripts that bridge the
 gap between the ALM tool they bought and the rest of the
 systems their company uses.

 Veracity was designed to be flexible in
 this regard.

 	

 It was built as a set of libraries.

	

 It is written in C, a lowest-common-denominator
 language that can be ported anywhere.

	

 It has
 plugin APIs for repository storage and for push/pull
 communication with a repository instance.

	

 It has
 a scripting engine which allows for a large amount of
 control and hooks using JavaScript.

	

 It uses HTTP
 for push and pull.

	

 It is fundamentally cross-platform,
 regularly built and tested on Windows, Mac, and
 Linux.

Apache License 2.0

All three of the most popular and established distributed version control
 tools (Bazaar, Git, and Mercurial) use the GNU General Public License
 (GPL). In contrast, Subversion uses the Apache License.

For Veracity, we have chosen to follow Subversion’s example in selecting
 the Apache License 2.0.

The GPL requires that all derived works also be made available under the
 GPL. This requirement means that GPL-licensed code cannot be
 used in proprietary software. The Apache License is more permissive
 about such things.

There is much controversy and debate over these matters. Many
 companies have concerns about using GPL software, especially in
 situations where customization and integration work is being done.
 While the validity of those concerns is in question, the
 bottom line is very simple: The Apache License is much friendlier
 to the corporate world than the GPL.

Formal Rename and Move

Some version control tools (including Git, for example)
 implement rename and move informally, by deleting the
 file and adding a new
 one with the new name or path.

 Veracity implements rename and move formally. When a file is
 created, it gets a unique identifier
 which never changes and which is distinct from its name or
 path.[28] Regardless of what happens to that file, its identity stays
 the same. If and when it gets modified, moved, renamed, or deleted,
 it is still the same file it was when it was born.

 Some people prefer informal rename. They consider it somewhat easier
 to use.

 I, however, am not a fan of informal rename. Some VCS operations,
 including the merging of branches, need to preserve the identity of
 a file across a change of its name. To accomplish this, Git
 has to do some educated guesswork. When Git sees a deleted file in one revision of the
 tree and an added file in another, it compares the contents of the files
 to decide if in fact they should be considered the same file.
 Git’s implementation of this guesswork is actually quite clever, usually producing the
 result the user expects. But not always.
 I personally prefer a design which allows the user to record exactly
 what happened, rather than expecting the VCS to divine the user’s
 intentions later. The design of Veracity reflects my preference
 on this matter.[29]

[28] Eric Raymond refers to this concept as “container identity”.

[29] Bazaar supports container identity also.

Repository Storage Plugins

As shown in Figure 9.1, “Veracity Architecture”, Veracity’s architecture hides all the
 details of repository storage behind an API. The 1.0 release of Veracity
 includes a storage implementation called FS3. By swapping this module
 for another plugin, it is possible to store a repository instance in another
 form, such as a SQL database, for example.

The various instances of the same repository can each use their own
 storage scheme. For example, a team might decide to use FS3 on all
 the developer desktops while using an enterprise SQL database on a central server.

Multiple Working Copies

With Mercurial, Git, and Bazaar, the repository instance usually lives in a hidden
 directory at the top of the working copy. This means that there is
a one-to-one relationship between repository instances and working copies.

As mentioned previously, Veracity supports plugins which allow repository data to be stored
 in a variety of different ways. For this reason,
 the repository instance is not stored with the working copy.

One nice benefit of this approach is the ability to have multiple working
 copies for one repository instance.

Locks

 Veracity’s lock feature is intended to make Veracity a viable DVCS for
 teams which manage binary assets under version control.

By its very nature, lock cannot be a local-only operation. There is
 little to be gained by preventing others from modifying a file in your
 already-private repository instance. So the lock operation joins clone,
 push, and pull as the only core DVCS operations which typically require a network
 connection.

Veracity allows locking of files only, not directories. Each file lock
 is held by one user and is limited in scope to a single named branch. In
 other words, you can’t lock a file globally across the whole repository. You can
 simply say that “file F cannot be modified by anyone else within branch B
 until my lock is removed”.

JavaScript

Veracity’s scripting language is JavaScript. The core Veracity libraries
 and executables are all written in C but a JavaScript interpreter[30] is embedded to provide support
 for several features.

 	Veracity exposes a full scripting API to the embedded
 JavaScript interpreter. We use this API to write our automated test
 suite and the server side of web applications.

	
 Hook functions, written in JavaScript, can be
 registered in a repository to be triggered when certain events
 happen.

	Veracity uses JSON[31] for all serialized data structures in the
 repository.

	Veracity includes a framework for writing web applications.
 The server side of such applications is written in JavaScript using the
 API mentioned previously. Veracity 1.0 includes a web app which supports
 build tracking, visualization of repository history, bug
 tracking, an activity stream, and Scrum burn down
 charts.

[30] https://developer.mozilla.org/en/SpiderMonkey

[31] http://www.json.org/

Stamp

 [image: Stamp]

Apply a label which gives information about a given version of the
 repository.

Veracity introduces a new DVCS operation called Stamp.[32] Stamps can be
 used to label revisions of the repository with certain attributes.
 For example, our continuous integration system applies the stamp “goodTests” to each
 revision of the tree that produced a successful build that also passed
 the automated test suite.

 Veracity’s stamps are conceptually similar to Flickr[33] tags, but we
 couldn’t call them “tags” because that word already has a specific
 meaning in the version control world.

[32] Git’s “notes” feature is somewhat similar.

[33] http://www.flickr.com/

Hash Functions

Just like Git and Mercurial, Veracity uses cryptographic hash functions
 to identify specific revisions. Git and Mercurial use SHA-1. Veracity uses
 SHA-1 as its default but also supports SHA-2 (at 256, 384, or 512 bits) and
 Skein (at 256, 512, or 1024 bits).

Scrum

In addition to being a DVCS, Veracity has a built-in work item tracking system
 for agile planning, build management, and tracking bugs. Full coverage of these features
 is beyond the scope of this book but I’ll go ahead and include a couple of
 pretty pictures.

[image: ScrumScrum]

[image: ScrumScrum]

Chapter 10. Basics with Veracity

 Futilisoft has begun work on a new product. This product calculates
 the probability (as an integer percentage) of winning the Powerball for any given
 set of numbers.

 The company has assigned two developers to work
 on this new project, Harry, located in Birmingham, England, and Sally,
 located in Birmingham, Alabama. Both developers are telecommuting to
 the Futilisoft corporate headquarters in Cleveland. After a bit of
 discussion, they have decided
 to implement their product as a command-line app in C and to use
 Veracity[34] 1.0 for version control.

[image: Basics with Veracity]

Create

 Sally gets the project started by creating a new repository.

~ server$ mkdir lottery

~ server$ cd lottery

lottery server$ vv init lottery

lottery server$ vv user create admin

lottery server$ vv whoami admin

lottery server$ vv serve --public
Serving unencrypted on port 8080.

 I consider the details of server configuration to be too arcane for this book. Let’s agree that it happened here and everything went fine.

[34] http://veracity-scm.com/

Clone, Add, Status, Commit

 By this time Harry is done skiving off and is ready to
 start coding. First he needs to clone to get his own repository instance.

~ harry$ vv clone http://server.futilisoft.com:8080/repos/lottery lottery
Downloading repository...... Done.
Saving new repository... Done.
Use 'vv checkout lottery <path>' to get a working copy.

 Veracity supports the ability to have more than one
 working copy per repository instance. It does not store the
 repository instance in the working copy. Rather, they are stored in an area we
 call the closet. The location of the closet is
 configurable. By default it is in
~/.sgcloset (Linux/Mac) or
%LOCALAPPDATA%\.sgcloset (Windows).

Now Harry needs a working copy.

~ harry$ vv checkout lottery ./lottery

~ harry$ cd lottery

Since this is Harry’s first time using Veracity, he first sets up his user account.

lottery harry$ vv user create harry

lottery harry$ vv whoami harry

 Harry wonders if Sally has already done anything in the new repository.

lottery harry$ ls -al
total 0
drwxr-xr-x 5 harry staff 170 May 31 10:17 .
drwxr-xr-x 24 harry staff 816 May 31 10:17 ..
drwxr-xr-x 7 harry staff 238 May 31 10:17 .sgdrawer

Apparently not. Nothing here but the .sgdrawer
 administrative area.
Jolly good then. It’s time to start coding. He opens his text editor and
 creates the starting point for their product.

#include <stdio.h>
#include <stdlib.h>

int calculate_result(int white_balls[5], int power_ball)
{
 return 0;
}

int main(int argc, char** argv)
{
 if (argc != 7)
 {
 fprintf(stderr, "Usage: %s power_ball (5 white balls)\n", argv[0]);
 return -1;
 }

 int power_ball = atoi(argv[1]);

 int white_balls[5];
 for (int i=0; i<5; i++)
 {
 white_balls[i] = atoi(argv[2+i]);
 }

 int result = calculate_result(white_balls, power_ball);

 printf("%d percent chance of winning\n", result);

 return 0;
}

Typical of most initial implementations, this is missing a lot of
 features. But it’s a good place to begin. Before committing his
code, he wants to make sure it compiles and runs.

lottery harry$ gcc -std=c99 lottery.c

lottery harry$ ls -l
total 32
-rwxr-xr-x 1 harry staff 8904 May 31 10:17 a.out
-rw-r--r-- 1 harry staff 555 May 31 10:17 lottery.c

lottery harry$./a.out
Usage: ./a.out power_ball (5 white balls)

lottery harry$./a.out 42 1 2 3 4 5
0 percent chance of winning

Righto. Time to store this file in the repository.
 First Harry needs to add the file to the pending changeset.

lottery harry$ vv add lottery.c

Harry uses the status operation to make sure the pending changeset looks proper.

lottery harry$ vv status
 Added: @/lottery.c
 Found: @/a.out

Veracity is reporting that it found a file it doesn’t know what to do about,
 that a.out file. No time to spit the bit. That’s a compiled
 executable, which should not be stored in a version control repository.
 He can just ignore that. Now
 it’s time to commit the file.

lottery harry$ vv commit -m "initial implementation"

 revision: 2:8d1b667537d569b307e320004ca7cfb10d8aea64
 branch: master
 who: harry
 when: 2011/05/31 10:18:23.640 -0500
 comment: initial implementation
 parent: 1:b669171b03dfcdb78fb332f3d7b09e62d4f05074

Push, Pull, Log, Diff

 Sally now needs
 to clone to get her own repository instance.

~ sally$ vv clone http://server.futilisoft.com:8080/repos/lottery lottery
Downloading repository...... Done.
Saving new repository... Done.
Use 'vv checkout lottery <path>' to get a working copy.

Now Sally needs a working copy.

~ sally$ vv checkout lottery ./lottery

~ sally$ cd lottery

Since this is Sally’s first time using Veracity, she first sets up her user account.

lottery sally$ vv user create sally

lottery sally$ vv whoami sally

OK, let’s take a look at the initial code Harry committed.

lottery sally$ ls -al
total 0
drwxr-xr-x 3 sally staff 102 May 31 10:18 .
drwxr-xr-x 25 sally staff 850 May 31 10:18 ..
drwxr-xr-x 7 sally staff 238 May 31 10:18 .sgdrawer

Hmmm. Harry was supposed to commit the initial code, but there’s nothing
here.

But Harry did commit his changes! Why aren’t they here? Ah, he forgot to push. Sally screams so loud at Harry that he can hear her all the way across the Pond.

lottery harry$ vv push
Pushing to http://server.futilisoft.com:8080/repos/lottery:
Pushing... Done.

Now Sally can pull.

lottery sally$ vv pull
Pulling from http://server.futilisoft.com:8080/repos/lottery:
Pulling... Done.

After she has pulled, Sally should have the code, right?

lottery sally$ ls -al
total 0
drwxr-xr-x 3 sally staff 102 May 31 10:18 .
drwxr-xr-x 25 sally staff 850 May 31 10:18 ..
drwxr-xr-x 7 sally staff 238 May 31 10:18 .sgdrawer

Hmmm. Still not there. Ah, maybe she needs to vv update the working copy.

lottery sally$ vv update

lottery sally$ ls -al
total 8
drwxr-xr-x 4 sally staff 136 May 31 10:20 .
drwxr-xr-x 25 sally staff 850 May 31 10:18 ..
drwxr-xr-x 7 sally staff 238 May 31 10:20 .sgdrawer
-rw-r--r-- 1 sally staff 555 May 31 10:20 lottery.c

Now that she has the initial code they had
 previously discussed, Sally is happy as a tick on a fat dog.
 She wants to check the log to see the details.

lottery sally$ vv log

 revision: 2:8d1b667537d569b307e320004ca7cfb10d8aea64
 branch: master
 who: harry
 when: 2011/05/31 10:18:23.640 -0500
 comment: initial implementation
 parent: 1:b669171b03dfcdb78fb332f3d7b09e62d4f05074

 revision: 1:b669171b03dfcdb78fb332f3d7b09e62d4f05074
 who:
 when: 2011/05/31 10:16:31.589 -0500

Note the way Veracity describes this commit: 2:8d1b667537d5…. At the
lowest level, a Veracity version ID is a cryptographic hash (SHA-1, by default).
This is the part after the colon. Before the colon
is a friendlier version number, one which starts at zero and increases by one
with each new version. This is more intuitive, but these version numbers are
valid only in one repository instance.

When Sally decides to take a look at the code, she immediately finds
 something that makes her nervous as a porcupine in a balloon factory. The program expects the red ball number to
 be the first argument, followed by the other five. But in the actual
 lottery, the five white numbers are always drawn and shown first. She
 worries this will be confusing for users so she decides to fix it.
 Fortunately it is only necessary to modify a few lines of main().

 if (argc != 7)
 {
 fprintf(stderr, "Usage: %s (5 white balls) power_ball\n", argv[0]);
 return -1;
 }

 int power_ball = atoi(argv[6]);

 int white_balls[5];
 for (int i=0; i<5; i++)
 {
 white_balls[i] = atoi(argv[1+i]);
 }

Now she uses the status operation to see the pending changes.

lottery sally$ vv status
Modified: @/lottery.c

No surprise there. Veracity knows that lottery.c
 has been modified. She wants to double-check by reviewing the actual
 changes.

lottery sally$ vv diff
=== ================
=== Modified: File @/lottery.c
--- @/lottery.c 76a16c36b9a4cea4a222ff8132f9f242fa04bed1
+++ @/lottery.c 2011/05/31 15:21:39.000 +0000
@@ -11,16 +11,16 @@
 {
 if (argc != 7)
 {
- fprintf(stderr, "Usage: %s power_ball (5 white balls)\n", argv[0]);
+ fprintf(stderr, "Usage: %s (5 white balls) power_ball\n", argv[0]);
 return -1;
 }

- int power_ball = atoi(argv[1]);
+ int power_ball = atoi(argv[6]);

 int white_balls[5];
 for (int i=0; i<5; i++)
 {
- white_balls[i] = atoi(argv[2+i]);
+ white_balls[i] = atoi(argv[1+i]);
 }

 int result = calculate_result(white_balls, power_ball);

Ain’t that the berries!?!

Veracity’s diff command can be configured to integrate with any file
 comparison tool the user prefers. But we also included a special command
 which gives seamless integration with SourceGear
 DiffMerge[35], our free application for comparing and merging, supported on Windows, Mac, and Linux.

lottery sally$ vv diffmerge

Figure 10.1. Sally’s Changes

[image: Sally’s Changes]

[35] http://www.sourcegear.com/diffmerge/

Update, Commit (with a merge)

Meanwhile, Harry has been coding as well. He heard somebody say that
it’s best to compile with all the warnings turned on, so he decides to give it
a try.

lottery harry$ gcc -std=c99 -Wall -Wextra -Werror lottery.c
cc1: warnings being treated as errors
lottery.c:5: warning: unused parameter 'white_balls'
lottery.c:5: warning: unused parameter 'power_ball'

I say! The code has some warnings. The calculate_result() function
isn’t using its parameters. Harry looks at the situation and realises the
problem immediately: That function should be checking its arguments for
validity! The power ball can be from 1 to 39 inclusive. The white balls can be
1 to 59 inclusive. So he implements the error checking.

int calculate_result(int white_balls[5], int power_ball)
{
 for (int i=0; i<5; i++)
 {
 if (
 (white_balls[i] < 1)
 || (white_balls[i] > 59)
)
 {
 return -1;
 }
 }

 if (
 (power_ball < 1)
 || (power_ball > 39)
)
 {
 return -1;
 }

 return 0;
}

Grand. Let’s see if it compiles.

lottery harry$ gcc -std=c99 -Wall -Wextra -Werror lottery.c

lottery harry$ ls -l
total 32
-rwxr-xr-x 1 harry staff 8904 May 31 10:22 a.out
-rw-r--r-- 1 harry staff 843 May 31 10:22 lottery.c

Quite. But Harry decides to diff before committing, just for good measure.

lottery harry$ vv diff
=== ================
=== Modified: File @/lottery.c
--- @/lottery.c 76a16c36b9a4cea4a222ff8132f9f242fa04bed1
+++ @/lottery.c 2011/05/31 15:22:18.000 +0000
@@ -4,6 +4,25 @@

 int calculate_result(int white_balls[5], int power_ball)
 {
+ for (int i=0; i<5; i++)
+ {
+ if (
+ (white_balls[i] < 1)
+ || (white_balls[i] > 59)
+)
+ {
+ return -1;
+ }
+ }
+
+ if (
+ (power_ball < 1)
+ || (power_ball > 39)
+)
+ {
+ return -1;
+ }
+
 return 0;
 }

Good show. Time to commit the change.

lottery harry$ vv commit -m "fix some warnings"

 revision: 3:7290fd8b3372dfecf5622dec12284d602553258e
 branch: master
 who: harry
 when: 2011/05/31 10:23:07.968 -0500
 comment: fix some warnings
 parent: 2:8d1b667537d569b307e320004ca7cfb10d8aea64

No problems there. This time he remembers that he needs to push his changes to the server.

But Sally has been working at the same time and she had her change ready
 to commit and push first.

lottery sally$ vv commit -m "change order of the command line args to be \
 more like what the user will expect"

 revision: 3:7414ae0aa096674df94e6f3e142e893709ff3ac6
 branch: master
 who: sally
 when: 2011/05/31 10:23:57.285 -0500
 comment: change order of the command line args to be more like
 what the user will expect
 parent: 2:8d1b667537d569b307e320004ca7cfb10d8aea64

lottery sally$ vv push
Pushing to http://server.futilisoft.com:8080/repos/lottery:
Pushing... Done.

So Harry tries to push his changes.

lottery harry$ vv push
vv: Error 234 (sglib): The branch needs to be merged.

What’s all this then? Veracity is not allowing Harry to push his
change because it would result in the master branch having two heads.

Harry uses pull to bring in changes.

lottery harry$ vv pull
Pulling from http://server.futilisoft.com:8080/repos/lottery:
Pulling... Done.

lottery harry$ vv heads

 revision: 3:7290fd8b3372dfecf5622dec12284d602553258e
 branch: master
 who: harry
 when: 2011/05/31 10:23:07.968 -0500
 comment: fix some warnings
 parent: 2:8d1b667537d569b307e320004ca7cfb10d8aea64

 revision: 4:7414ae0aa096674df94e6f3e142e893709ff3ac6
 branch: master
 who: sally
 when: 2011/05/31 10:23:57.285 -0500
 comment: change order of the command line args to be more like
 what the user will expect
 parent: 2:8d1b667537d569b307e320004ca7cfb10d8aea64

lottery harry$ vv branch list
master (needs merge)

Harry can see from the output of vv heads that the master branch is now ambiguous and needs to be merged.

lottery harry$ vv merge
1 updated, 0 deleted, 0 added, 1 merged, 0 unresolved

Splendid. Now the merge is in the working copy.

lottery harry$ vv status
Modified: @/lottery.c
 Found: @/a.out

Everything seems to be ship-shape and Bristol fashion. Harry wants to see what happened.

lottery harry$ vv diff
=== ================
=== Modified: File @/lottery.c
--- @/lottery.c 603c9fe57661de7967b3926feb3cf29438dfcbda
+++ @/lottery.c 2011/05/31 15:24:47.000 +0000
@@ -30,16 +30,16 @@
 {
 if (argc != 7)
 {
- fprintf(stderr, "Usage: %s power_ball (5 white balls)\n", argv[0]);
+ fprintf(stderr, "Usage: %s (5 white balls) power_ball\n", argv[0]);
 return -1;
 }

- int power_ball = atoi(argv[1]);
+ int power_ball = atoi(argv[6]);

 int white_balls[5];
 for (int i=0; i<5; i++)
 {
- white_balls[i] = atoi(argv[2+i]);
+ white_balls[i] = atoi(argv[1+i]);
 }

 int result = calculate_result(white_balls, power_ball);

Interesting. Diff shows Sally’s changes. This is because the diff was
performed against changeset 7290fd8b3372dfecf5622dec12284d602553258e. Harry types vv parents to see
the version of the tree on which his current pending changeset is based.

lottery harry$ vv parents

 revision: 3:7290fd8b3372dfecf5622dec12284d602553258e
 branch: master
 who: harry
 when: 2011/05/31 10:23:07.968 -0500
 comment: fix some warnings
 parent: 2:8d1b667537d569b307e320004ca7cfb10d8aea64

 revision: 4:7414ae0aa096674df94e6f3e142e893709ff3ac6
 branch: master
 who: sally
 when: 2011/05/31 10:23:57.285 -0500
 comment: change order of the command line args to be more like
 what the user will expect
 parent: 2:8d1b667537d569b307e320004ca7cfb10d8aea64

Because it is a merge, his working copy has two parents. The resulting DAG node will have two parents as well.

His code is already committed.
Apparently Veracity was able to merge Sally’s changes directly into
Harry’s modified copy of the file without any conflicts. Smashing!
Let’s see if it compiles.

lottery harry$ gcc -std=c99 -Wall -Wextra -Werror lottery.c

lottery harry$ ls -l
total 32
-rwxr-xr-x 1 harry staff 8904 May 31 10:25 a.out
-rw-r--r-- 1 harry staff 843 May 31 10:24 lottery.c

Very well then. So Harry is ready to commit the merge.

lottery harry$ vv commit -m "merge"

 revision: 5:ee2493eac8e7fc751e2b57a87a3768a192770ae3
 branch: master
 who: harry
 when: 2011/05/31 10:25:47.532 -0500
 comment: merge
 parent: 3:7290fd8b3372dfecf5622dec12284d602553258e
 parent: 4:7414ae0aa096674df94e6f3e142e893709ff3ac6

And now vv parents shows only one node but that node has two
 parents.

lottery harry$ vv parents
Parents of pending changes in working copy:

 revision: 5:ee2493eac8e7fc751e2b57a87a3768a192770ae3
 branch: master
 who: harry
 when: 2011/05/31 10:25:47.532 -0500
 comment: merge
 parent: 3:7290fd8b3372dfecf5622dec12284d602553258e
 parent: 4:7414ae0aa096674df94e6f3e142e893709ff3ac6

And push.

lottery harry$ vv push
Pushing to http://server.futilisoft.com:8080/repos/lottery:
Pushing... Done.

Update (with merge)

Meanwhile, Sally is fixin’ to go ahead and add a
 feature that was requested by the sales team: If
 the user chooses the lucky number 7 as the red ball, the chances of
 winning are doubled. Since she is starting a new task, she decides to
 begin with pull and update to make sure she has the latest code.

lottery sally$ vv pull
Pulling from http://server.futilisoft.com:8080/repos/lottery:
Pulling... Done.

lottery sally$ vv update

lottery sally$ vv parents
Parents of pending changes in working copy:

 revision: 5:ee2493eac8e7fc751e2b57a87a3768a192770ae3
 branch: master
 who: harry
 when: 2011/05/31 10:25:47.532 -0500
 comment: merge
 parent: 4:7290fd8b3372dfecf5622dec12284d602553258e
 parent: 3:7414ae0aa096674df94e6f3e142e893709ff3ac6

Then she implements the lucky 7 feature in two shakes of a lamb’s tail by
adding just a few lines
 of new code to main().

lottery sally$ vv diff
=== ================
=== Modified: File @/lottery.c
--- @/lottery.c e3d1f5b0034e4d190e76b993e67d3e2bd24072ed
+++ @/lottery.c 2011/05/31 15:27:06.000 +0000
@@ -44,6 +44,11 @@

 int result = calculate_result(white_balls, power_ball);

+ if (7 == power_ball)
+ {
+ result = result * 2;
+ }
+
 printf("%d percent chance of winning\n", result);

 return 0;

And commits her change. And pushes it too.

lottery sally$ vv commit -m "lucky 7"

 revision: 6:d494106a9a796e4887aa8de464d825aa76a59a0b
 branch: master
 who: sally
 when: 2011/05/31 10:27:31.083 -0500
 comment: lucky 7
 parent: 5:ee2493eac8e7fc751e2b57a87a3768a192770ae3

lottery sally$ vv push
Pushing to http://server.futilisoft.com:8080/repos/lottery:
Pushing... Done.

Meanwhile, Harry has realised his last change had a bug. He modified
 calculate_result() to return -1 for invalid arguments but he forgot to modify
the caller to handle the error. As a consequence, entering a ball number that is
out of range causes the program to behave improperly.

lottery harry$./a.out 61 2 3 4 5 42
-1 percent chance of winning

The percent chance of winning certainly can’t be a negative number, now can it? So
 Harry adds an extra check for this case.

lottery harry$ vv diff
=== ================
=== Modified: File @/lottery.c
--- @/lottery.c e3d1f5b0034e4d190e76b993e67d3e2bd24072ed
+++ @/lottery.c 2011/05/31 15:28:08.000 +0000
@@ -44,6 +44,12 @@

 int result = calculate_result(white_balls, power_ball);

+ if (result < 0)
+ {
+ fprintf(stderr, "Invalid arguments\n");
+ return -1;
+ }
+
 printf("%d percent chance of winning\n", result);

 return 0;

And proceeds to commit and push the fix.

lottery harry$ vv commit -m "propagate error code"

 revision: 6:dc13f09452dbc1e24d2ad68b1fba917ef1856b61
 branch: master
 who: harry
 when: 2011/05/31 10:28:33.769 -0500
 comment: propagate error code
 parent: 5:ee2493eac8e7fc751e2b57a87a3768a192770ae3

lottery harry$ vv push
vv: Error 234 (sglib): The branch needs to be merged.

Blimey! Sally must have pushed a new changeset already. Harry
 once again needs to pull and merge to combine Sally’s changes with his
 own.

lottery harry$ vv pull
Pulling from http://server.futilisoft.com:8080/repos/lottery:
Pulling... Done.

lottery harry$ vv heads

 revision: 7:d494106a9a796e4887aa8de464d825aa76a59a0b
 branch: master
 who: sally
 when: 2011/05/31 10:27:31.083 -0500
 comment: lucky 7
 parent: 5:ee2493eac8e7fc751e2b57a87a3768a192770ae3

 revision: 6:dc13f09452dbc1e24d2ad68b1fba917ef1856b61
 branch: master
 who: harry
 when: 2011/05/31 10:28:33.769 -0500
 comment: propagate error code
 parent: 5:ee2493eac8e7fc751e2b57a87a3768a192770ae3

lottery harry$ vv merge
1 updated, 0 deleted, 0 added, 1 merged, 1 unresolved

The merge didn’t go quite as smoothly this time.
 Harry wonders if anyone would notice if he were to take the Wumpty down to the pub. Apparently there
 was a conflict.
Harry decides to
open up lottery.c in his editor to examine the situation.

...
 int result = calculate_result(white_balls, power_ball);

<<<<<<< Baseline: BASELINE~lottery.c: /Users/harry/lottery/.sgdrawer/t/merge_2011...
 if (result < 0)
 {
 fprintf(stderr, "Invalid arguments\n");
 return -1;
 }

=======
 if (7 == power_ball)
 {
 result = result * 2;
 }

>>>>>>> Other: OTHER~lottery.c: /Users/harry/lottery/.sgdrawer/t/merge_2011...
 printf("%d percent chance of winning\n", result);

 return 0;
...

Veracity has included both Harry’s code and Sally’s code with conflict
 markers to delimit things. What we want is to include both blocks of code.
 Sally’s new code can simply be
 included right after
Harry’s error checking.

...
 int result = calculate_result(white_balls, power_ball);

 if (result < 0)
 {
 fprintf(stderr, "Invalid arguments\n");
 return -1;
 }

 if (7 == power_ball)
 {
 result = result * 2;
 }

 printf("%d percent chance of winning\n", result);

 return 0;
...

That should take care of the problem. Harry compiles the code to make
 sure and then commits the merge.

lottery harry$ vv commit -m "merge"
vv: Error 202 (sglib): Cannot commit with unresolved merge issues.

Crikey! Now what? Harry fixed the conflict in lottery.c but
Veracity doesn’t seem to know that.

lottery harry$ vv resolve list
Unresolved contents conflict on File: @/lottery.c
 Baseline Path: @/lottery.c
 Problem: Merge couldn't generate the item's contents.
 Cause(s):
 Edit/Edit: Changes to item's contents in different branches conflict.
 Possible Contents: (use 'view' or 'diff' to examine)
 ancestor
 baseline
 other
 merge: automatically merged from 'baseline' and 'other' with ':merge'
 working

Ah yes. Harry realises that he forgot to tell Veracity that he had resolved the conflict.
He
uses resolve to let Veracity know that the problem has
been dealt with.

lottery harry$ vv resolve accept working lottery.c
Accepted 'working' value for 'contents' conflict on File:
 @/lottery.c

lottery harry$ vv resolve list

There, that looks much better. Harry tries again to commit the merge.

lottery harry$ vv commit -m "merge"

 revision: 8:817b33a44fd16f268c6bd0f75b95aaf32e461554
 branch: master
 who: harry
 when: 2011/05/31 10:29:50.892 -0500
 comment: merge
 parent: 7:d494106a9a796e4887aa8de464d825aa76a59a0b
 parent: 6:dc13f09452dbc1e24d2ad68b1fba917ef1856b61

And then to retry the push.

lottery harry$ vv push
Pushing to http://server.futilisoft.com:8080/repos/lottery:
Pushing... Done.

That’s put paid to that.

Move

 Harry immediately moves on to his next task, which is to restructure
 the tree a bit. He doesn’t want the top level of the repository to
 get too cluttered so he decides to move their vast number of source code files into a src subdirectory.

lottery harry$ mkdir src

lottery harry$ vv move lottery.c src

lottery harry$ vv st
 Added: @/src/
 Moved: @/src/lottery.c
 # was at @/
 Found: @/a.out

lottery harry$ vv commit -m "dir structure"

 revision: 9:519ea522ac74f7f1764088d98478f8f569b65f18
 branch: master
 who: harry
 when: 2011/05/31 10:30:39.162 -0500
 comment: dir structure
 parent: 8:817b33a44fd16f268c6bd0f75b95aaf32e461554

lottery harry$ vv push
Pushing to http://server.futilisoft.com:8080/repos/lottery:
Pushing... Done.

Sally decides having the number 7 as a constant in the
 code is ugly enough to stop an eight-day clock. She adds a #define to give it a more meaningful
 name.

lottery sally$ vv diff
=== ================
=== Modified: File @/lottery.c
--- @/lottery.c 5b6f6ebaab98dbfe3386f90436af79dc142482f2
+++ @/lottery.c 2011/05/31 15:31:07.000 +0000
@@ -2,6 +2,8 @@
 #include <stdio.h>
 #include <stdlib.h>

+#define LUCKY_NUMBER 7
+
 int calculate_result(int white_balls[5], int power_ball)
 {
 for (int i=0; i<5; i++)
@@ -50,7 +52,7 @@
 return -1;
 }

- if (7 == power_ball)
+ if (LUCKY_NUMBER == power_ball)
 {
 result = result * 2;
 }

And immediately commits and pushes the change.

lottery sally$ vv commit -m "use a #define for the lucky number"

 revision: 9:b5b788895d07b660b2b9213f089383a88d201d27
 branch: master
 who: sally
 when: 2011/05/31 10:31:45.918 -0500
 comment: use a #define for the lucky number
 parent: 8:817b33a44fd16f268c6bd0f75b95aaf32e461554

lottery sally$ vv push
vv: Error 234 (sglib): The branch needs to be merged.

Hmmm. Sally needs to pull and merge before she can push her changes.

lottery sally$ vv pull
Pulling from http://server.futilisoft.com:8080/repos/lottery:
Pulling... Done.

She uses vv heads to get a look at the merge situation.

lottery sally$ vv heads

 revision: 10:519ea522ac74f7f1764088d98478f8f569b65f18
 branch: master
 who: harry
 when: 2011/05/31 10:30:39.162 -0500
 comment: dir structure
 parent: 8:817b33a44fd16f268c6bd0f75b95aaf32e461554

 revision: 9:b5b788895d07b660b2b9213f089383a88d201d27
 branch: master
 who: sally
 when: 2011/05/31 10:31:45.918 -0500
 comment: use a #define for the lucky number
 parent: 8:817b33a44fd16f268c6bd0f75b95aaf32e461554

And proceeds to attempt the merge itself.

lottery sally$ vv merge
1 updated, 0 deleted, 1 added, 0 merged, 0 unresolved

lottery sally$ vv st
 Added: @/src/
 Moved: @/src/lottery.c
 # was at @/
 Found: @/a.out

No problems on the merge.

lottery sally$ vv commit -m "merge"

 revision: 11:3cc62d4c79e2f3a94bb2731e84d2304a10760938
 branch: master
 who: sally
 when: 2011/05/31 10:32:44.349 -0500
 comment: merge
 parent: 10:519ea522ac74f7f1764088d98478f8f569b65f18
 parent: 9:b5b788895d07b660b2b9213f089383a88d201d27

lottery sally$ vv push
Pushing to http://server.futilisoft.com:8080/repos/lottery:
Pushing... Done.

Rename

 Harry decides the time has come to create a proper
 Makefile. And also to gratuitously rename
lottery.c.

lottery harry$ vv add Makefile

lottery harry$ vv rename src/lottery.c pb.c

lottery harry$ vv st
 Added: @/Makefile
 Renamed: @/src/pb.c
 # was lottery.c
 Found: @/a.out
 Found: @/pb

 Note that Veracity has separate commands for rename and move. Its
 architecture treats the name of the file as a distinct attribute from
 the directory in which it resides.

lottery harry$ vv commit -m "Makefile. and lottery.c was too long to type."

 revision: 12:674a480f641b6f206fac2aad1751ae44946a80f6
 branch: master
 who: harry
 when: 2011/05/31 10:58:49.906 -0500
 comment: Makefile. and lottery.c was too long to type.
 parent: 11:3cc62d4c79e2f3a94bb2731e84d2304a10760938

lottery harry$ vv push
Pushing to http://server.futilisoft.com:8080/repos/lottery:
Pushing... Done.

Sally maintains her momentum with #define and adds names for the ball ranges.

lottery sally$ vv diff
=== ================
=== Modified: File @/lottery.c
--- @/src/lottery.c 4da6892d436bbab66c980639d3c975cc2da28f99
+++ @/src/lottery.c 2011/05/31 15:59:47.000 +0000
@@ -3,6 +3,8 @@
 #include <stdlib.h>

 #define LUCKY_NUMBER 7
+#define MAX_WHITE_BALL 59
+#define MAX_POWER_BALL 39

 int calculate_result(int white_balls[5], int power_ball)
 {
@@ -10,7 +12,7 @@
 {
 if (
 (white_balls[i] < 1)
- || (white_balls[i] > 59)
+ || (white_balls[i] > MAX_WHITE_BALL)
)
 {
 return -1;
@@ -19,7 +21,7 @@

 if (
 (power_ball < 1)
- || (power_ball > 39)
+ || (power_ball > MAX_POWER_BALL)
)
 {
 return -1;

And commits her changes.

lottery sally$ vv commit -m "more #defines"

 revision: 12:d68d482736fecc60549110855becd2e0155f1ef5
 branch: master
 who: sally
 when: 2011/05/31 11:00:25.105 -0500
 comment: more #defines
 parent: 11:3cc62d4c79e2f3a94bb2731e84d2304a10760938

lottery sally$ vv push
vv: Error 234 (sglib): The branch needs to be merged.

Grrr. That Harry is dumber than a coal bucket.

lottery sally$ vv pull
Pulling from http://server.futilisoft.com:8080/repos/lottery:
Pulling... Done.

lottery sally$ vv heads

 revision: 13:674a480f641b6f206fac2aad1751ae44946a80f6
 branch: master
 who: harry
 when: 2011/05/31 10:58:49.906 -0500
 comment: Makefile. and lottery.c was too long to type.
 parent: 11:3cc62d4c79e2f3a94bb2731e84d2304a10760938

 revision: 12:d68d482736fecc60549110855becd2e0155f1ef5
 branch: master
 who: sally
 when: 2011/05/31 11:00:25.105 -0500
 comment: more #defines
 parent: 11:3cc62d4c79e2f3a94bb2731e84d2304a10760938

lottery sally$ vv merge
1 updated, 0 deleted, 1 added, 0 merged, 0 unresolved

lottery sally$ make
gcc -std=c99 -Wall -Wextra -Werror src/pb.c -o pb

lottery sally$ vv commit -m "merge"

 revision: 14:b11eaca1a7be8684069e9ce461f42f834acae344
 branch: master
 who: sally
 when: 2011/05/31 11:01:19.139 -0500
 comment: merge
 parent: 13:674a480f641b6f206fac2aad1751ae44946a80f6
 parent: 12:d68d482736fecc60549110855becd2e0155f1ef5

lottery sally$ vv push
Pushing to http://server.futilisoft.com:8080/repos/lottery:
Pushing... Done.

Delete

Harry wants to get a head start on Zawinski’s Law, so he decides to add
 an IMAP protocol library to their tree.

lottery harry$ vv add libvmime-0.9.1

lottery harry$ vv commit -m "add libvmime so we can do the mail reader feature"

 revision: 15:5500274b7b84a5564929a0fb294d553f4a553008
 branch: master
 who: harry
 when: 2011/05/31 11:04:59.204 -0500
 comment: add libvmime so we can do the mail reader feature
 parent: 14:b11eaca1a7be8684069e9ce461f42f834acae344

lottery harry$ vv push
Pushing to http://server.futilisoft.com:8080/repos/lottery:
Pushing... Done.

Sally does a pull and finds something that
 makes her mad as a mule chewing on bumblebees.

lottery sally$ vv pull
Pulling from http://server.futilisoft.com:8080/repos/lottery:
Pulling... Done.

lottery sally$ vv update

lottery sally$ ls -l
total 32
-rw-r--r-- 1 sally staff 66 May 31 11:01 Makefile
drwxr-xr-x 29 sally staff 986 May 31 11:05 libvmime-0.9.1
-rwxr-xr-x 1 sally staff 8952 May 31 11:01 pb
drwxr-xr-x 3 sally staff 102 May 31 11:01 src

Sally remembers that the specification
 says the product isn’t supposed to include a full email reader until the
 next release. For the entire 1.0 development cycle, that third party
 library is going to be about as useful as a snooze button on a fire alarm. So she
 deletes it.

lottery sally$ vv rm libvmime-0.9.1

lottery sally$ vv commit -m "no mail reader until 2.0"

 revision: 16:7590c00819c05cd2103b29216350377c0746ae13
 branch: master
 who: sally
 when: 2011/05/31 11:06:37.293 -0500
 comment: no mail reader until 2.0
 parent: 15:5500274b7b84a5564929a0fb294d553f4a553008

lottery sally$ vv push
Pushing to http://server.futilisoft.com:8080/repos/lottery:
Pushing... Done.

Lock, Revert

 Fed up with conflicts, Sally decides to lock pb.c so only she can modify it.

 The decentralized architecture required us
 to make certain compromises in the implementation of this feature.
 Obtaining a lock requires a live
 network connection to wherever you normally push. It is also possible
 to create local changesets which violate a lock about which you are not
 yet aware, which will result in a lock violation error later when you
 attempt to push those changes.

lottery sally$ vv lock src/pb.c
Pulling... Done.
Pushing... Done.

Harry updates his repository instance.

lottery harry$ vv pull
Pulling from http://server.futilisoft.com:8080/repos/lottery:
Pulling... Done.

lottery harry$ vv update

lottery harry$ ls -l
total 32
-rw-r--r-- 1 harry staff 66 May 31 10:58 Makefile
-rwxr-xr-x 1 harry staff 8952 May 31 10:58 pb
drwxr-xr-x 3 harry staff 102 May 31 10:58 src

Pants! That Sally must be in a nark. She’s deleted all his email code!
Harry decides to indent[36] pb.c.

lottery harry$ indent src/pb.c

lottery sally$ vv commit -m "indent our code"
vv: Error 164 (sglib): Lock violation: @/src/pb.c is locked by sally

Such a mithering. Harry calms down and reverts the changes.

 In this case, the commit failed with a lock violation because Harry
 did a pull after Sally grabbed the lock. If he had not, the commit
 would have succeeded, but a subsequent attempt to push would have failed.

lottery harry$ vv revert src/pb.c

lottery harry$ vv st
 Found: @/pb
 Found: @/pb.c.BAK

lottery harry$ rm src/pb.c.BAK

Sally, basking in the comfort of her lock, makes her edits. She has
decided to eliminate uses of atoi(), which is deprecated.

lottery sally$ vv diff
=== ================
=== Modified: File @/src/pb.c
--- @/src/pb.c eb093372fc2d0461465c2fbc0fef5dea54c4c898
+++ @/src/pb.c 2011/05/31 16:27:06.000 +0000
@@ -43,7 +43,14 @@
 int white_balls[5];
 for (int i=0; i<5; i++)
 {
- white_balls[i] = atoi(argv[1+i]);
+ char* endptr = NULL;
+ long val = strtol(argv[1+i], &endptr, 10);
+ if (*endptr)
+ {
+ fprintf(stderr, "Invalid arguments\n");
+ return -1;
+ }
+ white_balls[i] = (int) val;
 }

 int result = calculate_result(white_balls, power_ball);

lottery sally$ make
gcc -std=c99 -Wall -Wextra -Werror pb.c -o pb

lottery sally$./pb 1 2 3 4 5 6
0 percent chance of winning

lottery sally$./pb 1 2 3e 4 5 6
Invalid arguments

And she commits her changes, lickety split.

lottery sally$ vv commit -m "use strtol. atoi is deprecated."

 revision: 17:d934a35fc8eda4fec7cb6b0d049e3881cd0e4a1d
 branch: master
 who: sally
 when: 2011/05/31 11:28:05.327 -0500
 comment: use strtol. atoi is deprecated.
 parent: 16:7590c00819c05cd2103b29216350377c0746ae13

lottery sally$ vv push
Pushing to http://server.futilisoft.com:8080/repos/lottery:
Pushing... Done.

 Veracity does not automatically remove a lock upon commit. Locks must
 be explicitly removed.

lottery sally$ vv unlock src/pb.c

[36] http://en.wikipedia.org/wiki/Indent_(Unix)

Tag

Still mourning the loss of his email code, Harry creates a
 tag so he can more easily access it later.

lottery harry$ vv log
...
 revision: 15:5500274b7b84a5564929a0fb294d553f4a553008
 who: harry
 when: 2011/05/31 11:04:59.204 -0500
 comment: add libvmime so we can do the mail reader feature
 parent: 14:b11eaca1a7be8684069e9ce461f42f834acae344
...

lottery harry$ vv tag add -r 15 \
 just_before_sally_deleted_my_email_code

 Harry used the revision number (15) here. Alternatively, he could have
 specified the changeset ID (5500274b7b84…).

lottery harry$ vv log

 revision: 16:7590c00819c05cd2103b29216350377c0746ae13
 branch: master
 who: sally
 when: 2011/05/31 11:06:37.293 -0500
 comment: no mail reader until 2.0
 parent: 15:5500274b7b84a5564929a0fb294d553f4a553008

 revision: 15:5500274b7b84a5564929a0fb294d553f4a553008
 who: harry
 when: 2011/05/31 11:04:59.204 -0500
 tag: just_before_sally_deleted_my_email_code
 comment: add libvmime so we can do the mail reader feature
 parent: 14:b11eaca1a7be8684069e9ce461f42f834acae344
...

 Veracity stores tags using its decentralized database. Adding
 a tag does not alter the version control DAG.

lottery harry$ vv push
Pushing to http://server.futilisoft.com:8080/repos/lottery:
Pushing... Done.

Sally sees Harry gloating in the company chat room about his
beloved tag, so she does an
 update.

lottery sally$ vv pull
Pulling from http://server.futilisoft.com:8080/repos/lottery:
Pulling... Done.

lottery sally$ vv update

lottery sally$ vv log
...
 revision: 15:5500274b7b84a5564929a0fb294d553f4a553008
 who: harry
 when: 2011/05/31 11:04:59.204 -0500
 tag: just_before_sally_deleted_my_email_code
 comment: add libvmime so we can do the mail reader feature
 parent: 14:b11eaca1a7be8684069e9ce461f42f834acae344
...

Sally sees Harry’s tag and rolls her eyes. Fine. Whatever.

Branch

 Sally wants more privacy. She decides to create her own named branch.

lottery sally$ vv branch new no_boys_allowed
Working copy attached to no_boys_allowed.
A new head will be created with the next commit.

Now that Sally is working in her own branch, she feels much more
 productive. She adds support for the “favorite” option. When a user is playing
 his
favorite numbers, his chances of winning should be doubled. In doing this,
she had to rework the way command-line args are parsed.
And she removes an atoi() call she missed last time.
And she restructures all the error checking into one place.

So main() now looks like this:

int main(int argc, char** argv)
{
 int balls[6];
 int count_balls = 0;
 int favorite = 0;

 for (int i=1; i<argc; i++)
 {
 const char* arg = argv[i];

 if ('-' == arg[0])
 {
 if (0 == strcmp(arg, "-favorite"))
 {
 favorite = 1;
 }
 else
 {
 goto usage_error;
 }
 }
 else
 {
 char* endptr = NULL;
 long val = strtol(arg, &endptr, 10);
 if (*endptr)
 {
 goto usage_error;
 }
 balls[count_balls++] = (int) val;
 }
 }

 if (6 != count_balls)
 {
 goto usage_error;
 }

 int power_ball = balls[5];

 int result = calculate_result(balls, power_ball);

 if (result < 0)
 {
 goto usage_error;
 }

 if (LUCKY_NUMBER == power_ball)
 {
 result = result * 2;
 }

 if (favorite)
 {
 result = result * 2;
 }

 printf("%d percent chance of winning\n", result);

 return 0;

usage_error:
 fprintf(stderr, "Usage: %s [-favorite] (5 white balls) power_ball\n", argv[0]);
 return -1;
}

 I despise if statements without
 braces. Reviewers of the early drafts of this book observed that I could save
 14 lines and fit the previous code listing on a single page if I compromised
 my principles. I refused.

She commits her changes, knowing that the commit will succeed because she
 is working in her private branch.

lottery sally$ vv commit -m "add -favorite and cleanup some other stuff"

 revision: 18:37939b07309af8232c44048ca0a1633c982b7506
 branch: no_boys_allowed
 who: sally
 when: 2011/05/31 11:41:37.432 -0500
 comment: add -favorite and cleanup some other stuff
 parent: 17:d934a35fc8eda4fec7cb6b0d049e3881cd0e4a1d

lottery sally$ vv push
Pushing to http://server.futilisoft.com:8080/repos/lottery:
Pushing... Done.

Merge (no conflicts)

Meanwhile, over in the master branch, Harry decides the white balls should be sorted before analysing them,
because that’s how they get shown on the idiot’s lantern.

lottery harry$ vv diff
=== ================
=== Modified: File @/src/pb.c
--- @/src/pb.c 5649f2644a495ba4bf4d2a23d9a28e5c30064cd5
+++ @/src/pb.c 2011/05/31 16:44:53.000 +0000
@@ -6,6 +6,25 @@
 #define MAX_WHITE_BALL 59
 #define MAX_POWER_BALL 39

+static int my_sort_func(const void* p1, const void* p2)
+{
+ int v1 = *((int *) p1);
+ int v2 = *((int *) p2);
+
+ if (v1 < v2)
+ {
+ return -1;
+ }
+ else if (v1 > v2)
+ {
+ return 1;
+ }
+ else
+ {
+ return 0;
+ }
+}
+
 int calculate_result(int white_balls[5], int power_ball)
 {
 for (int i=0; i<5; i++)
@@ -27,6 +46,8 @@
 return -1;
 }

+ qsort(white_balls, 5, sizeof(int), my_sort_func);
+
 return 0;
 }

And he commits the change.

lottery harry$ vv commit -m "sort the white balls"

 revision: 19:e1ff5a3d4def8a5b45179f5326f68367b2f270c9
 branch: master
 who: harry
 when: 2011/05/31 11:46:01.784 -0500
 comment: sort the white balls
 parent: 17:d934a35fc8eda4fec7cb6b0d049e3881cd0e4a1d

But now he’s curious about what Sally has been doing. She said he
 wasn’t allowed to commit to her branch but she didn’t say anything about
 looking at it.

lottery harry$ vv heads

 revision: 18:37939b07309af8232c44048ca0a1633c982b7506
 branch: no_boys_allowed
 who: sally
 when: 2011/05/31 11:41:37.432 -0500
 comment: add -favorite and cleanup some other stuff
 parent: 17:d934a35fc8eda4fec7cb6b0d049e3881cd0e4a1d

 revision: 19:e1ff5a3d4def8a5b45179f5326f68367b2f270c9
 branch: master
 who: harry
 when: 2011/05/31 11:46:01.784 -0500
 comment: sort the white balls
 parent: 17:d934a35fc8eda4fec7cb6b0d049e3881cd0e4a1d
...

Interesting. She added the “favorite” feature. Harry decides he wants
 that. So he asks Veracity to merge stuff from Sally’s branch into
master.

lottery harry$ vv merge -r 37939b07309af8232c44048ca0a1633c982b7506
1 updated, 0 deleted, 0 added, 1 merged, 0 unresolved

Harry used -r 37939b07309a… here. He could also have used -r 18 (the local revision number) or -b no_boys_allowed (the head of Sally’s branch).

Top Ho! Harry examines pb.c and discovers that it was merged correctly.
 Sally’s “favorite” changes are there and his qsort changes are as well. So he
compiles the code, runs a quick test, and commits the merge.

lottery harry$ make
gcc -std=c99 -Wall -Wextra -Werror pb.c -o pb

lottery harry$./pb -favorite 5 3 33 22 7 31
0 percent chance of winning

lottery harry$ vv commit -m "merge changes from sally"

 revision: 20:68f12175bcda2296298f6b0f30da326341976356
 branch: master
 who: harry
 when: 2011/05/31 11:49:49.565 -0500
 comment: merge changes from sally
 parent: 18:37939b07309af8232c44048ca0a1633c982b7506
 parent: 19:e1ff5a3d4def8a5b45179f5326f68367b2f270c9

lottery harry$ vv push
Pushing to http://server.futilisoft.com:8080/repos/lottery:
Pushing... Done.

Merge (repeated, no conflicts)

Simultaneously, both Harry and Sally have a crisis of conscience and realize
that their code has no comments at all.

Harry:

lottery harry$ vv diff
=== ================
=== Modified: File @/src/pb.c
--- @/src/pb.c 3cdd8958d3467042fd5791f3c16951f3cfdacc5c
+++ @/src/pb.c 2011/05/31 16:53:00.000 +0000
@@ -47,6 +47,7 @@
 return -1;
 }

+ // lottery ball numbers are always shown sorted
 qsort(white_balls, 5, sizeof(int), my_sort_func);

 return 0;

lottery harry$ vv commit -m "comments"

 revision: 21:cb3675aada7836e63ec88fc5a6eeb9f80a00f656
 branch: master
 who: harry
 when: 2011/05/31 11:53:32.590 -0500
 comment: comments
 parent: 20:68f12175bcda2296298f6b0f30da326341976356

lottery harry$ vv push
Pushing to http://server.futilisoft.com:8080/repos/lottery:
Pushing... Done.

And Sally:

lottery sally$ vv diff
=== ================
=== Modified: File @/src/pb.c
--- @/src/pb.c 7d927466a22e24d4adc5542f6bf0a4797aa06801
+++ @/src/pb.c 2011/05/31 16:54:57.000 +0000
@@ -35,7 +35,7 @@
 {
 int balls[6];
 int count_balls = 0;
- int favorite = 0;
+ int favorite = 0; // this should be a bool

 for (int i=1; i<argc; i++)
 {
@@ -69,10 +69,13 @@
 goto usage_error;
 }

+ // the power ball is always the last one given
 int power_ball = balls[5];

 int result = calculate_result(balls, power_ball);

+ // calculate result can return -1 if the ball numbers
+ // are out of range
 if (result < 0)
 {
 goto usage_error;

lottery sally$ vv commit -m "comments"

 revision: 21:69f50e32759eef176403ca0c019fb1af73145fb9
 branch: no_boys_allowed
 who: sally
 when: 2011/05/31 11:55:40.174 -0500
 comment: comments
 parent: 18:37939b07309af8232c44048ca0a1633c982b7506

lottery sally$ vv push
Pushing to http://server.futilisoft.com:8080/repos/lottery:
Pushing... Done.

Harry decides to try again to merge the changes from Sally’s branch.

lottery harry$ vv heads

 revision: 22:69f50e32759eef176403ca0c019fb1af73145fb9
 branch: no_boys_allowed
 who: sally
 when: 2011/05/31 11:55:40.174 -0500
 comment: comments
 parent: 18:37939b07309af8232c44048ca0a1633c982b7506

 revision: 21:cb3675aada7836e63ec88fc5a6eeb9f80a00f656
 branch: master
 who: harry
 when: 2011/05/31 11:53:32.590 -0500
 comment: comments
 parent: 20:68f12175bcda2296298f6b0f30da326341976356

lottery harry$ vv merge -r 69f50e32759eef176403ca0c019fb1af73145fb9
1 updated, 0 deleted, 0 added, 1 merged, 0 unresolved

No problems with the merge. Let’s review the changes.

lottery harry$ vv diff
=== ================
=== Modified: File @/src/pb.c
--- @/src/pb.c ec840f5b96e6f64ab9efaf0b37975ceafa6bfe81
+++ @/src/pb.c 2011/05/31 16:57:07.000 +0000
@@ -57,7 +57,7 @@
 {
 int balls[6];
 int count_balls = 0;
- int favorite = 0;
+ int favorite = 0; // this should be a bool

 for (int i=1; i<argc; i++)
 {
@@ -91,10 +91,13 @@
 goto usage_error;
 }

+ // the power ball is always the last one given
 int power_ball = balls[5];

 int result = calculate_result(balls, power_ball);

+ // calculate result can return -1 if the ball numbers
+ // are out of range
 if (result < 0)
 {
 goto usage_error;

 Harry checks to see if everything compiles, and commits the merge.

lottery harry$ make
gcc -std=c99 -Wall -Wextra -Werror pb.c -o pb

lottery harry$ vv commit -m "merge changes from sally"

 revision: 23:31d8497141637a90feeb38f16ac9ff9454673e3d
 branch: master
 who: harry
 when: 2011/05/31 11:57:55.503 -0500
 comment: merge changes from sally
 parent: 22:69f50e32759eef176403ca0c019fb1af73145fb9
 parent: 21:cb3675aada7836e63ec88fc5a6eeb9f80a00f656

lottery harry$ vv push
Pushing to http://server.futilisoft.com:8080/repos/lottery:
Pushing... Done.

Merge (conflicts)

 Sally realizes that C99 has a bool type that should have been used.

lottery sally$ vv diff
=== ================
=== Modified: File @/src/pb.c
--- @/src/pb.c a35acfb35567f64a2e20ef246ae44aef89a904bd
+++ @/src/pb.c 2011/05/31 16:59:35.000 +0000
@@ -2,6 +2,7 @@
 #include <stdio.h>
 #include <stdlib.h>
 #include <string.h>
+#include <stdbool.h>

 #define LUCKY_NUMBER 7
 #define MAX_WHITE_BALL 59
@@ -35,7 +36,7 @@
 {
 int balls[6];
 int count_balls = 0;
- int favorite = 0; // this should be a bool
+ bool favorite = false;

 for (int i=1; i<argc; i++)
 {
@@ -45,7 +46,7 @@
 {
 if (0 == strcmp(arg, "-favorite"))
 {
- favorite = 1;
+ favorite = true;
 }
 else
 {

And she commits the change to her private branch.

lottery sally$ vv commit -m "use the bool type"

 revision: 24:1bb6c0d46c06d7575f39ca82210e586ff56a0ad4
 branch: no_boys_allowed
 who: sally
 when: 2011/05/31 12:00:28.819 -0500
 comment: use the bool type
 parent: 21:69f50e32759eef176403ca0c019fb1af73145fb9

lottery sally$ vv push
Pushing to http://server.futilisoft.com:8080/repos/lottery:
Pushing... Done.

Meanwhile, Harry has been grumbling about Sally’s butchering of the Queen’s English and
 decides to correct the spelling of the word “favourite”.

lottery harry$ vv diff
=== ================
=== Modified: File @/src/pb.c
--- @/src/pb.c cde51a1d39996efe6e24608d908d9ae9ec93c869
+++ @/src/pb.c 2011/05/31 17:01:23.000 +0000
@@ -57,7 +57,7 @@
 {
 int balls[6];
 int count_balls = 0;
- int favorite = 0; // this should be a bool
+ int favourite = 0; // this should be a bool

 for (int i=1; i<argc; i++)
 {
@@ -65,9 +65,9 @@

 if ('-' == arg[0])
 {
- if (0 == strcmp(arg, "-favorite"))
+ if (0 == strcmp(arg, "-favourite"))
 {
- favorite = 1;
+ favourite = 1;
 }
 else
 {
@@ -108,7 +108,7 @@
 result = result * 2;
 }

- if (favorite)
+ if (favourite)
 {
 result = result * 2;
 }
@@ -118,7 +118,7 @@
 return 0;

 usage_error:
- fprintf(stderr, "Usage: %s [-favorite] (5 white balls) power_ball\n", argv[0]);
+ fprintf(stderr, "Usage: %s [-favourite] (5 white balls) power_ball\n", argv[0]);
 return -1;
 }

Feeling quite chuffed about his pedantry,
 Harry proceeds to commit the change.

lottery harry$ vv commit -m "fixed spelling error"

 revision: 24:54bc95bef02726d647ce3f3f741048b852c22bef
 branch: master
 who: harry
 when: 2011/05/31 12:02:12.841 -0500
 comment: fixed spelling error
 parent: 23:31d8497141637a90feeb38f16ac9ff9454673e3d

lottery harry$ vv pull
Pulling from http://server.futilisoft.com:8080/repos/lottery:
Pulling... Done.

lottery harry$ vv heads

 revision: 25:1bb6c0d46c06d7575f39ca82210e586ff56a0ad4
 branch: no_boys_allowed
 who: sally
 when: 2011/05/31 12:00:28.819 -0500
 comment: use the bool type
 parent: 22:69f50e32759eef176403ca0c019fb1af73145fb9

 revision: 24:54bc95bef02726d647ce3f3f741048b852c22bef
 branch: master
 who: harry
 when: 2011/05/31 12:02:12.841 -0500
 comment: fixed spelling error
 parent: 23:31d8497141637a90feeb38f16ac9ff9454673e3d

And to once again merge Sally’s changes into master.

lottery harry$ vv merge -b no_boys_allowed
1 updated, 0 deleted, 0 added, 1 merged, 1 unresolved

lottery harry$ vv st
Modified: @/src/pb.c
 Found: @/pb
Conflict: @/src/pb.c
 # content conflict

Use the 'vv resolve' command to view more details
about your conflicts or to resolve them.

lottery harry$ vv resolve list
Unresolved contents conflict on File: @/src/pb.c
 Baseline Path: @/src/pb.c
 Problem: Merge couldn't generate the item's contents.
 Cause(s):
 Edit/Edit: Changes to item's contents in different branches conflict.
 Possible Contents: (use 'view' or 'diff' to examine)
 ancestor
 baseline
 other
 merge: automatically merged from 'baseline' and 'other' with ':merge'
 working

Crikey! Conflicts in pb.c again.

lottery harry$ vv diff
=== ================
=== Modified: File @/src/pb.c
--- @/src/pb.c 4a36fdc1601f2b9b586b9239f0dd3c928722a00c
+++ @/src/pb.c 2011/05/31 17:03:17.000 +0000
@@ -2,6 +2,7 @@
 #include <stdio.h>
 #include <stdlib.h>
 #include <string.h>
+#include <stdbool.h>

 #define LUCKY_NUMBER 7
 #define MAX_WHITE_BALL 59
@@ -57,7 +58,11 @@
 {
 int balls[6];
 int count_balls = 0;
+<<<<<<< Baseline: BASELINE~pb.c: /Users/harry/lottery/.sgdrawer/t/merge_20110531_0/pb.c...
 int favourite = 0; // this should be a bool
+=======
+ bool favorite = false;
+>>>>>>> Other: OTHER~pb.c: /Users/harry/lottery/.sgdrawer/t/merge_20110531_0/pb.c...

 for (int i=1; i<argc; i++)
 {
@@ -67,7 +72,11 @@
 {
 if (0 == strcmp(arg, "-favourite"))
 {
+<<<<<<< Baseline: BASELINE~pb.c: /Users/harry/lottery/.sgdrawer/t/merge_20110531_0/pb.c...
 favourite = 1;
+=======
+ favorite = true;
+>>>>>>> Other: OTHER~pb.c: /Users/harry/lottery/.sgdrawer/t/merge_20110531_0/pb.c...
 }
 else
 {

Now that needs a bit of guntering. Harry quickly realises this conflict
 needs to be resolved manually by keeping the proper spelling
 but converting the type to bool like Sally did.

lottery harry$ vv diff
=== ================
=== Modified: File @/src/pb.c
--- @/src/pb.c 4a36fdc1601f2b9b586b9239f0dd3c928722a00c
+++ @/src/pb.c 2011/05/31 17:06:24.000 +0000
@@ -2,6 +2,7 @@
 #include <stdio.h>
 #include <stdlib.h>
 #include <string.h>
+#include <stdbool.h>

 #define LUCKY_NUMBER 7
 #define MAX_WHITE_BALL 59
@@ -57,7 +58,7 @@
 {
 int balls[6];
 int count_balls = 0;
- int favourite = 0; // this should be a bool
+ bool favourite = false;

 for (int i=1; i<argc; i++)
 {
@@ -67,7 +68,7 @@
 {
 if (0 == strcmp(arg, "-favourite"))
 {
- favourite = 1;
+ favourite = true;
 }
 else
 {

After manually merging the changes, Harry proceeds to resolve the conflict and commit the merge.

lottery harry$ vv resolve accept working src/pb.c
Accepted 'working' value for 'contents' conflict on File:
 @/src/pb.c

lottery harry$ vv commit -m "merge, conflicts fixed"

 revision: 26:96f8aed89a5d16970c7d4e87b6a96e7d481ed3e9
 branch: master
 who: harry
 when: 2011/05/31 12:07:29.931 -0500
 comment: merge, conflicts fixed
 parent: 25:1bb6c0d46c06d7575f39ca82210e586ff56a0ad4
 parent: 24:54bc95bef02726d647ce3f3f741048b852c22bef

lottery harry$ vv push
Pushing to http://server.futilisoft.com:8080/repos/lottery:
Pushing... Done.

And all of Futilisoft’s customers lived happily ever after.

Summary

 The following screen shot from the Veracity web UI shows the resulting DAG from the 26 changesets just completed by Harry and Sally.

[image: Summary]

 The following table summarizes all 21 commands for Veracity. See
 Table A.1, “Commands” in Appendix A, Comparison Table for a comparison of
 Veracity’s commands with other tools.

 	Operation	Veracity Command
	Create	vv init
	Checkout	vv checkout
	Commit	vv commit
	Update	vv update
	Add	vv add
	Edit	[a]
	Delete	vv remove
	Rename	vv rename
	Move	vv move
	Status	vv status
	Diff	vv diff
	Revert	vv revert
	Log	vv log
	Tag	vv tag
	Branch	vv branch
	Merge	vv merge
	Resolve	vv resolve
	Lock	vv lock[b]
	Clone	vv clone
	Push	vv push
	Pull	vv pull
	[a] Automatic: Veracity will notice that the file has changed.

[b] Veracity locks must be explicitly removed.

Part III. Beyond Basics

Chapter 11. Workflows

Managing Multiple Releases

 One of the most important things version control can help you with
is the management of multiple releases.

 Software teams come in all shapes and sizes, with an
 enormous variation in the frequency of their releases.
 Figure 11.1, “Frequency of Releases” shows some examples of
 software teams and a very rough idea of how often they
 tend to do a release.

Figure 11.1. Frequency of Releases

[image: Frequency of Releases]

 The more often you release, the more you need to
 be using branches to manage things.

Shrinkwrap

 Let’s talk first about traditional shrinkwrap software. This is software
 which is licensed to be installed on the end user system. The “shrinkwrap” name
 sounds funny today because most software of this type now gets delivered
 by download over the Internet with no physical packaging at all.
 But not that long ago, a lot of software was actually pressed onto CD, placed
 in a box, and wrapped in cellophane. Many people still use the “shrinkwrap”
 term for this kind of software even when plastic wrap is not involved.

Even without physical packaging, every release of shrinkwrap software
 involves a significant amount of overhead for both the developers (updating
 all the supporting materials and systems) and users (installing everywhere,
 learning the new features, etc.). Because of this overhead, shrinkwrap
 software tends to get released
 every 3-24 months, with annual releases being a
 typical situation.

Figure 11.2. Traditional Shrinkwrap

[image: Traditional Shrinkwrap]

Figure 11.2, “Traditional Shrinkwrap” illustrates the development of four major
 releases,
 along with several maintenance releases. In this development
process, the team is working on two or three releases at the same time. Time goes from left to right in the picture.

 Remember that in my DAG pictures, I always draw the arrows from child to
 parent.
 Think of these arrows as meaning “is based on”.
 Nonetheless, for merge nodes, this can
 feel a bit counterintuitive, since the changesets are flowing
 in the opposite direction of the arrow. So in this chapter I
 have shaded the merge nodes green and added an extra green arrow
 to show how things in the merge operation are moving.

	
 First, after a bunch of work gets done, version 1.0 is released.

	
 Version 2.0 development begins immediately, using 1.0 as the starting point.

	
 Version 3.0 development begins early, branching off the 2.0 code base before it is complete.

	
 To deal with a critical bug-fix, version 1.0.1 is released.

	
 Version 2.0 is completed and released. Stuff from 2.0 gets merged into the 3.0 branch. For users still on v1, a bug-fix version 1.0.2 is released.

	
 To deal with a critical bug-fix, version 2.0.1 is released.

	
 Version 3.0 is completed and released. Bug-fix releases are done for users still on v2 and even on v1. V4 begins with 3.0 as the starting point.

	
 Version 4.0 is completed and released. Once again, there are bug-fix
 releases for the two previous versions, resulting in 3.0.1 and 2.0.3,
 but v1 is too old for continuing the maintenance.

 Let’s talk specifically about how we can use branches to support this kind of
 workflow. First, we have our main development branch. We’ll call it
 Master. All of your
development work goes here. All new feature work goes in here,
and bug-fixes from other branches get merged back into here.
Everything finds its way to Master, directly or indirectly.
I define my workflows such that Master is usually regarded as “somewhat unstable”.[37] Insofar as lots of
developers are using it, we want its contents to build and pass test suites. But this is where work-in-progress goes.

Polishing Branches

 As development moves along, at some point it is time to begin preparing for
 a release. This phase of the cycle is often called “QA” or “Testing”,
 but I prefer not to use terminology which suggests that all testing and
 bug-fixing is left until the end. Best practices in software development
 are to find and fix bugs as early as possible. So I call this phase “polishing”,
 which is more suggestive of taking something that is basically done and giving
 it the detailed attention it needs to have a really fine fit and finish.

 The process of polishing your software to make it ready for release is
 mostly about fixing minor bugs. But sometimes during this phase,
 stuff happens that should not go into the release.

	

 Sometimes we identify bug-fixes or improvements that are too risky to be included in the release being polished[38].

	

 Sometimes feature work on release N+1 begins
 sometime during the Polishing phase of release N.

	

 Sometimes, even though we spent some time during the
 release N cycle building a feature, we decide that
 feature needs to get postponed until release N+1.

If none of the above happened, and the Master branch contains
 exactly what will go into the release, and
 absolutely everything that needs to be committed during the Polishing
 phase can go into the release currently being Polished, then we don’t
 need a branch.

But that’s rare. So we need a branch.
 We need a way to keep the bug-fixing and polishing of the release separate
 from everything else.

So we create a new Polishing branch.

Figure 11.3. A Polishing Branch

[image: A Polishing Branch]

	Everybody working on this release should switch
and start working in the Polishing branch. All bug-fixes for the release should be committed directly into the Polishing branch, not into the Master branch.
They will get merged back into Master later.

	Anything which needs to be committed but does
 not go into this release should go into Master.

Polishing is a short-lived branch. It exists entirely for the
 purpose of getting something ready for release. When that something
 is ready, the Polishing branch is closed.

Release Branches

 When the polishing is done and the software is nice and shiny, it is time for release.

Figure 11.4. A Release Branch

[image: A Release Branch]

There are three things that happen at Release time.

	

 Create a Release branch off the Polishing branch.

	

 Merge all the changes from the Polishing branch back into Master.

	

 Close the Polishing branch.

 You should always have a
 branch which contains the exact
 contents of your current release.

 Actually, the Release branch almost doesn’t need to be a branch.
 In a perfect world,
 the release is flawless and this branch will never get any more changes
 committed to it. A branch
 which never gets any commits is effectively a tag.

 But in reality, critical fixes are sometimes necessary. Users don’t
 always upgrade to the latest release and it is customary to continue providing a certain amount of support and maintenance for older releases, within reason.

	

 Sometimes bugs slip through the Polishing phase and an x.0.1 release is necessary.

	

 Sometimes it is a good idea to do a 1.0.x when 3.0 is released to make their behavior more consistent or compatible in some way.

	

 Sometimes an x.0.1 release is necessary because some other piece of software changed.

Figure 11.5. Critical Fix

[image: Critical Fix]

When a critical fix is needed, do the fix in the Release branch. Merge
 it back to Master.

Note that I have been referring to “the” Release branch, as if there is
 only one of them. In practice, you should keep an open Release branch for
 every major version which was released to customers. So your release
 branches will likely be named something like “Release_v1” and “Release_v2”
 and so on.

Feature Branches

Everything I’m saying in this chapter can be considered as a starting
 point. Your particular situation may be much more complicated.
 You should feel free to tweak things until you have a workflow
 that is effective for your team. And make sure you’re using a VCS that is
 flexible enough to adapt with you.

Here’s an example:

 Sometimes development of new features is too complicated to have just
 one Master branch. In these situations, it may be helpful to think
 of Master as a cluster of branches. There is still one main branch called Master where everything eventually ends up, but we also have subordinate branches called “Feature
 Branches”.

Figure 11.6. Feature Branches

[image: Feature Branches]

With Feature Branches, developers work on each major feature in a dedicated
 branch. When the feature is done, it gets merged into Master. But it is
 also possible to construct a Polishing branch directly from one or more
 Feature branches. This allows us to make the decision to release only
 a subset of the features which have been under development. For example,
 in Figure 11.6, “Feature Branches”, features B and C are not ready for release, so we
 construct a Polishing branch which contains only features A and D.

[37] Some Git developers use its “master” branch in the manner I describe for a Release branch, treating it as highly stable. This is merely a difference in naming.

[38] http://www.ericsink.com/articles/Four_Questions.html

Web

 With a Web-based application, the notion of a “release” is different, so
 the way we use the VCS is different.

 	

 For web developers, “release” means deploying new code to the website. That new code immediately becomes available to all users.

	

 The website has only one version of the software on it.
 Everybody is always using the latest version. There is no
 obligation to continue providing support to users who chose
 to stay with an older version instead of upgrading to the
 new release.

	

 Users are generally unaware of versioning. Version numbers are
 not part of the user’s consciousness. People who talk at
 conferences about their experience with Google Calendar do not
 ask each other which version they are running.

	

 For web developers, there isn’t much overhead in doing a
 release, so they can deploy new versions
 with new features and fixes as often as makes sense.
 Some major websites deploy changes
 multiples times per day.

 Despite all the differences, there are some ways where the use of a
 VCS for Web developers is the same. Just as with shrinkwrap, we have a
 Master branch, the main line of development. Everything finds its way
 here.

 We also
 have a Release branch, but there’s only one of them, and it’s a long-lived
 branch. It always contains the exact code which is currently deployed on the
 website.

So, omitting the details of Polishing, we can think of a Web app workflow as an
 ongoing Release branch which periodically merges changes from the
 ongoing Master branch, as shown in Figure 11.7, “Versions of a Web App”.

Figure 11.7. Versions of a Web App

[image: Versions of a Web App]

 We handle critical fixes the same way as well. Do the fix in the Release branch. Merge it back into Master.

Feature branches are perhaps even more important for Web developers than
 for situations where releases are less frequent. A typical Web app team is
 a bunch of developers working on a variety of features that are going to be ready for deployment at different times. With a shrinkwrap workflow, we try to get all the
 features to be done at the same time. If we have a feature that isn’t ready for
 release, we have to (a) slip the release or (b) make the feature miss the boat and wait 12 months until the next departure.
 With a Web app, each feature can get released whenever it is ready.

 When we prepare to do a release,
 we want to gather the feature(s) that are ready into a Polishing branch
 so we can integrate and test and polish and make sure they are truly
 ready for deployment.
 But if all the features being developed are mixed up together in the same
 branch, it’s a lot harder to grab just the ones we want to deploy.
 Feature branches make it much easier to pick and
 choose only certain features, excluding the ones that we need to keep
 cooking until they’re ready.

Chapter 12. DVCS Internals

Version control tools
 are more like cars than clocks.

Clock users have no need to know how a clock works behind the dials. We
 just want to know what time it is. Those who understand the inner workings
 of a clock can’t tell time any more skillfully than the rest of us.

Version control tools are more like cars. Lots of people, including me,
 use cars without knowing much about how they work. However, people who
 really understand cars tend to get better performance out of them.

 This chapter could be a whole book of its own—I am not giving
 a comprehensive treatment of how distributed version control tools work.
 I’ll just offer a few highlights that I think are worth knowing:

	

 I’ll use Git to discuss cryptographic hashes.

	

 I’ll use Mercurial to discuss deltified storage.

	

 I’ll use Veracity to discuss DAGs and blob storage. Plus a brief discussion of its decentralized database.

First, let’s talk briefly about the concept of a delta.

Deltas

 One of the first things I said in this book is that a VCS repository
 contains every version of everything that has ever happened.

So how does the repository store all that stuff? Maybe it just keeps a full snapshot of every version of the tree. Disk space is cheap, right?

Well, it’s not that cheap. If version control data were stored that way, lots of teams would have repositories of 10 TB or more.
Around this point, the common argument that “disk space is cheap” starts
 to break down.
 The cost of dealing with 10 TB of important data is much greater
 than just the cost of the actual disk platters.

Fortunately, there is a huge amount of redundancy in version-controlled data.
 We observe that tree N is often not terribly different from
 tree N-1. By definition, each version of the tree is derived from its
 predecessor. A commit might be as simple as a one-line fix to a single
 file. All of the other files are unchanged; we don’t really need to
 store another copy of them.

So we don’t want to store the full contents of the tree for every single
 change. Instead, we want a way to store a tree in terms of the changes
 relative to another tree. We call this a delta. All version control tools use some form of
delta concept when storing repository data.

A tree is a hierarchy of directories and files. A delta is the difference
 between two trees. In theory, those two trees do not need to be related.
 However, in practice, the only reason we calculate the difference between
 them is because one of them is derived from the other. Some developer
 started with tree N and made one or more changes, resulting in tree
 N+1.

We can think of a delta as a
 list of changes which express the difference between two trees. This
includes files or directories that have been added, modified, renamed, deleted, or moved.

The delta concept can be used for individual files as well. A file delta
 merely expresses the difference between two files. Once
 again, the reason we calculate a file delta is because we believe it will
 be smaller, usually because one of the files is
 derived from the other.

Many modern version control tools use binary file deltas
 for repository storage. One popular file delta algorithm is called vcdiff[39].
 It outputs a list of byte ranges which have been changed.
 This means it can handle any kind of file, binary or text. As an ancillary
 benefit, the vcdiff algorithm compresses the data at the same time.

Binary deltas are a helpful feature for some version control tool users, especially
 in situations where the binary files are large. Consider the case where a
 user checks out a 500 MB file, changes a few bytes, and commits it back in.
 If the repository is using file deltas,
 it will only grow by a small amount.

Some version control tools can also use binary deltas
 to improve performance over slow network lines.
 If both sides of the network connection already have version N, then
 transferring version N+1 over the wire can be accomplished by sending
 just a delta.
 The increase in network performance for offsite users can be quite
 dramatic.

[39] http://tools.ietf.org/html/rfc3284

Git: Cryptographic Hashes

 Most DVCS tools, including Git, Mercurial, and Veracity, use
 cryptographic hashes.

 A cryptographic hash is an algorithm which constructs a short
 digest from a
 sequence of bytes of any length. There are many such hash
 algorithms[40].
 For
 the SHA-1[41] algorithm, the output digest is
 always 160 bits in length. Some hash algorithms, including SHA-2[42] and Skein[43],
 are capable of generating longer digests, at lengths of 256, 512, or even
 1024 bits.

 Example with SHA-1

 Let’s take a closer look at how a DVCS makes use of cryptographic
 hashes. I will be using Git for my examples in this section, but it
applies to Veracity as well. Mercurial, on the other hand, does things a bit differently.

In this example, we want to use our VCS to store four text files. For the sake
of keeping things simple, each
file is just a few bytes long. (The example would be more realistic if the files
were a lot bigger, but you get the idea.)

eric:hashes_example eric$ echo Eric > file1.txt

eric:hashes_example eric$ echo Erik > file2.txt

eric:hashes_example eric$ echo eric > file3.txt

eric:hashes_example eric$ echo Eirc > file4.txt

eric:hashes_example eric$ ls -l
total 32
-rw-r--r-- 1 eric staff 5 Jun 20 10:29 file1.txt
-rw-r--r-- 1 eric staff 5 Jun 20 10:29 file2.txt
-rw-r--r-- 1 eric staff 5 Jun 20 10:29 file3.txt
-rw-r--r-- 1 eric staff 5 Jun 20 10:29 file4.txt

Each of these files contains my first name or a slight misspelling
 thereof. Now I use Git to show me the SHA-1 hash for each of these
 files.[44]

eric:hashes_example eric$ git hash-object file1.txt
44bf09d0a2c36585aed1c34ba2e5d958a9379718

eric:hashes_example eric$ git hash-object file2.txt
63ae94dae6067d9683cc3a9cea87f8fb388c0e80

eric:hashes_example eric$ git hash-object file3.txt
782d09e3fbfd8cf1b5c13f3eb9621362f9089ed5

eric:hashes_example eric$ git hash-object file4.txt
a627820d67e455a4f0dfa49c912fbddb88fca483

Note that even though all four of the input strings are similar, the
resulting hash values are very different. As you’ll see later, this is important.

 Git uses hashes in two important ways.

	When you commit
 a file into your repository, Git calculates and remembers the hash
 of the contents of the file. When you later retrieve the file, Git can
 verify that the hash of the data being retrieved exactly matches the
hash that was computed when it was stored. In this fashion, the hash
 serves as an integrity checksum, ensuring that the data has not been corrupted
 or altered.

 For example, if somebody were to hack the DVCS repository such that
 the contents of file2.txt were changed to “Fred”, retrieval of that
 file would cause an error because the software would detect that
 the SHA-1 digest for “Fred” is not 63ae94dae606…

	
 Git also uses hash digests as database keys for looking
 up files and data.

 If you ask Git for the contents of file2.txt, it
 will first look up its previously computed digest for the contents of that file[45], which
 is 63ae94dae606… Then it looks in the
 repository for the data associated with that value and returns “Erik”
 as the result. (For the moment, you should try to ignore the fact that
 we just used a 40 character hex string as the database key for four characters
 of data.)

 Let’s assume that we now want to add another file,
 file5.txt, which happens to contain exactly the same string
 as file2.txt. So the hash of the
 file contents will be exactly the same.

eric:hashes_example eric$ echo Erik > file5.txt

eric:hashes_example eric$ git hash-object file5.txt
63ae94dae6067d9683cc3a9cea87f8fb388c0e80

When Git stores the contents of file5.txt,
it will realize that it already has a copy of that data. There
is no need to store it again. Hooray! Git just saved us four
bytes of storage space! (Keep in mind that instead of “Erik”, these
two files could contain a gigabyte of video, which would imply a somewhat
more motivating space savings.) This process is called
deduplication.

This is deeply neato, but what would have happened if file5.txt
did not contain “Erik” but somehow happened to still have a SHA-1 hash of
63ae94dae606…?
According to the pigeonhole principle[46], this is theoretically possible. When a cryptographic hash algorithm generates the same digest for two different pieces of data, we call that a collision.

If a collision were to happen in this situation, we would have some pretty
big problems. When the DVCS is asked to store the contents of
file5.txt (which does not contain “Erik” but which somehow does have a SHA-1 hash of 63ae94dae606…), it would
incorrectly
conclude that it already has a copy of that data. So the real contents of
file5.txt would be discarded. Future attempts to
retrieve the contents of that file would erroneously return “Erik”.

 Because of this, it is rather important that the DVCS never encounter
 two different pieces of data which have the same digest. Fortunately,
 good cryptographic hash functions are designed to make such
 collisions extremely unlikely.

 And just how unlikely is that?

Collisions

 Your chances of winning the Powerball lottery are
 far better than finding a hash
 collision. After all, lotteries often have actual winners.
 The probability of a hash collision is more like a
 lottery that has been running since prehistoric times and has never had
 a winner and will probably not have a winner for
 billions of years.

It is no accident that “Eric”, “Erik”, “eric”, and “Eirc” have
 hash values that are so different.
 Cryptographic hash algorithms
 are intentionally designed
 to ensure that two similar pieces of data have digests which are not
 similar.

The likelihood of accidentally finding a collision is related to the bit
 length of the
 hash. Specifically, the average number of evaluations necessary to
 find a collision is
 2(bit_length/2).[47] So,
 if we are trying to find two pieces of data which have the same SHA-1 hash,
 we could expect to be searching through 280 pieces of
 data. If we check one
 million hashes per second, we’ll probably find a collision in about 38
 billion years.

Unsurprisingly, no one has ever found a SHA-1 collision.

Note that these probabilities apply to the situation where a hash
 collision is found accidentally, roughly equivalent to the notion of
 somebody who is just checking random combinations to see if a collision
 happens to
 show up.
 But what if somebody is being a bit more intentional, searching for a collision
 using a better method than just being random? Surely this search won’t take
 as long if we’re being smart about it, right?

Well, no. That’s part of the definition of a good cryptographic hash algorithm:
 There is no better method. If there
 were, then the hash would be considered “broken”.

This is fairly important for a DVCS. For example, consider
 the situation where somebody has access to a repository containing source
 code for a payroll system. Their goal is to alter the source code such
 that they will get extra money on payday.

If they can take a source file and then find an altered version of that
 file which has the same SHA-1 hash, they might be able to
 achieve their goal. Because the SHA-1 hash matches, it is
 quite likely that they could store their altered version in the
 repository without anyone noticing.

But with a strong cryptographic hash function, it is virtually
 impossible to find any string of bytes which
 have the same SHA-1 hash as the original file. And it
 is even less likely that they could find an altered version which
 accomplishes the goal of giving them more money, or even
 compiles without errors.

Incidentally, SHA-1 is actually considered broken. For security-oriented applications, it is
 obsolete and should generally not be used anymore.
 However, let me explain
 a bit more about what cryptographers mean when they say that SHA-1 is broken.

SHA-1 is considered broken because somebody found a smarter way to search for
 a collision, a method which is more effective than just trying random
 combinations over and over as fast as you can. But that doesn’t mean that
 finding a collision is easy. It simply means that the search for a
 collision in SHA-1 should take less time than
 it is theoretically supposed to take. Instead of the full 80 bits of
 strength that we would expect SHA-1 to have, it actually has about 51 bits of
 strength. That means that instead of 38 billion years, we should expect to
 find a collision in about 70 years.

But still, 70 years is
 a long time. It remains the case that nobody has ever found a collision in
 SHA-1.

Nonetheless, there are some who will feel safer using a stronger hash
 algorithm.
 This is why we decided
 to give Veracity support for SHA-2 and Skein, both of which allow
 for 256 bits or more and neither of which has been broken.
 At 256 bits, the search for a collision is going to take a long time.
 Instead of one million attempts per second, let’s do a trillion.
 And let’s assume that there are 6 billion people on Earth and every one of
 them has a computer and each of us are doing a trillion checks per second.
 At that rate, it should take us around 2 trillion years to find a collision.

[40] http://en.wikipedia.org/wiki/Cryptographic_hash_function

[41] http://en.wikipedia.org/wiki/SHA-1

[42] http://en.wikipedia.org/wiki/SHA-2

[43] http://en.wikipedia.org/wiki/Skein_(hash_function)

[44] Actually, Git prepends a short header (blob <filesize>\0) when it calculates SHA-1 values.

[45] Git stores this information in a structure called a “tree” object.

[46] http://en.wikipedia.org/wiki/Pigeonhole_principle

[47] http://en.wikipedia.org/wiki/Birthday_problem

Mercurial: Repository Structure

Revlogs

 An important part of Mercurial’s design is the notion of a
 revlog, a file format which is designed to
 store all versions of a given file in an efficient manner. Mercurial
 uses the revlog format for basically everything it stores in the repository.

 Each revision of a file is identified by a “NodeID”, which is a
 SHA-1/160 hash of its contents (combined with the position of that
 node in the history).

 Each version of the file can be stored as either a complete
 snapshot of the file’s contents, or as a binary delta against the
 previous version. Mercurial stores a complete snapshot every so
 often to ensure that it is only necessary to walk back so far.

 The revlog file is append-only. Each new version of an object is
 written to the end of the file without altering anything that was already
 there. This means that it uses forward deltas. Reverse deltas
 are a lot more typical today, because the most common operation
 is the retrieval of the most recent version. With reverse
 deltas the most recent version is always stored as a snapshot.
 In Mercurial, retrieving the most recent version might involve
 reconstructing it from an older snapshot with later deltas applied
 to it.

 Reading a given version of the file from a revlog can be
 accomplished by a single contiguous read. No seeks are necessary.
 If that version is stored as a snapshot, just read it. If it is
 stored as a delta, read it and any deltas before it, back to the
 previous snapshot. This elegant aspect of the design
 is one of the reasons Mercurial is so fast.

 A revlog is actually two files. The .d file contains the actual
 file data. The .i file is an index designed to make it easier to
 find things. When the revlog is small, these two files are
 combined into one, with the data stored in the .i file and no
 .d file.

 As I said, Mercurial gets a lot of its efficiency from the careful design of this
 revlog file format, but there are some tradeoffs.
 Mercurial always
 assumes that the entire file (including the last snapshot and all deltas)
 will fit into RAM. This makes things much faster, but it makes Mercurial
 generally not effective for large files (over 10 MB).[48]

lottery harry$ hg debugindex .hg/store/data/src/pb.c.i
 rev offset length base linkrev nodeid p1 p2
 0 0 467 0 10 a7bdd2379025 000000000000 000000000000
 1 467 168 0 12 692932a95c0d 000000000000 a7bdd2379025
 2 635 173 0 15 f1d9cb4201e4 692932a95c0d 000000000000
 3 808 476 0 17 d238a6113e4c f1d9cb4201e4 000000000000
 4 1284 491 0 18 b71d299270a5 f1d9cb4201e4 000000000000
 5 1775 470 0 19 4a7ebb32f962 b71d299270a5 d238a6113e4c
 6 2245 64 0 20 6b99ca4dde14 4a7ebb32f962 000000000000
 7 2309 177 0 21 33557d969679 d238a6113e4c 000000000000
 8 2486 213 0 22 e4d67566afd0 6b99ca4dde14 33557d969679
 9 2699 102 0 23 ab4bcfb966f8 33557d969679 000000000000
 10 2801 384 0 24 86d19e47e6d0 e4d67566afd0 000000000000
 11 3185 88 0 25 4969c00e0bc8 86d19e47e6d0 ab4bcfb966f8

lottery harry$ hg debugindex .hg/store/00manifest.i
 rev offset length base linkrev nodeid p1 p2
 0 0 52 0 0 4bf51ef87fa1 000000000000 000000000000
 1 52 52 1 1 df9a6175c86f 4bf51ef87fa1 000000000000
 2 104 52 2 2 f282fd300cae 4bf51ef87fa1 000000000000
 3 156 52 3 3 2128ed694101 df9a6175c86f f282fd300cae
 4 208 52 4 4 cf6095e27d1b 2128ed694101 000000000000
 5 260 52 5 5 a3954dc14901 2128ed694101 000000000000
 6 312 52 6 6 84f3337a15c2 cf6095e27d1b a3954dc14901
 7 364 56 7 7 723f96182c10 84f3337a15c2 000000000000
 8 420 52 8 8 f81e41ac9f78 84f3337a15c2 000000000000
 9 472 56 9 9 43b4d425d11b f81e41ac9f78 723f96182c10
 10 528 100 9 10 db730b6b114f 43b4d425d11b 000000000000
 11 628 56 11 11 c0916422f5f9 43b4d425d11b 000000000000
 12 684 98 11 12 a0a068b209a9 c0916422f5f9 db730b6b114f
 13 782 12861 11 13 fa7d4fbf3283 a0a068b209a9 000000000000
 14 13643 91 14 14 847ed0078d54 fa7d4fbf3283 000000000000
 15 13734 62 14 15 26f762825d61 847ed0078d54 000000000000
 16 13796 61 14 16 fa14759e626d 26f762825d61 000000000000
 17 13857 62 14 17 65ed8051c722 fa14759e626d 000000000000
 18 13919 122 18 18 96c0a3cf81b1 fa14759e626d 000000000000
 19 14041 62 18 19 61aa1de12abe 96c0a3cf81b1 65ed8051c722
 20 14103 62 18 20 f68d6078c862 61aa1de12abe 000000000000
 21 14165 119 21 21 47f22792ec34 65ed8051c722 000000000000
 22 14284 62 21 22 1e7caebb4684 f68d6078c862 47f22792ec34
 23 14346 62 21 23 a30745ba5cae 47f22792ec34 000000000000
 24 14408 119 24 24 cbe36265b98c 1e7caebb4684 000000000000
 25 14527 62 24 25 f991d0456dd4 cbe36265b98c a30745ba5cae

Manifests

 For every version of the tree, Mercurial stores a manifest, a complete list of all the files in the tree and their versions.

lottery harry$ hg debugdata .hg/store/00manifest.i 24
.hgtagsc04bfcf9c20c06746293f5474da270d88501a9c1
Makefileb87f10c1ca797b426bc6ac4522aae0de1bf6902a
src/pb.c86d19e47e6d07cfddba6a4a7f6d7013dd782075a

 The manifest is also stored in a revlog. The deltification here is
 critical because storing a full listing for every revision of the
 tree could become enormously large.

 Note that a Mercurial manifest only contains files. Mercurial does
 not track information about the directories that contain those files.
 Consequently, it cannot store an empty directory.

Changesets

 For each revision of the tree, Mercurial stores a changeset. A
 changeset is
 a record which lists all the changes to files, including who made the
 change, the log message, the date/time, and the name of the
 branch.

lottery harry$ hg debugdata .hg/store/00changelog.i 24
cbe36265b98c1f656ad1f0c3546c458a68ee85eb
Harry <harry@futilisoft.com>
1305662021 18000
src/pb.c

fixed spelling error

A Mercurial changeset has zero, one, or two parents. If it is the root
 node of the DAG, it has zero parents. If it is a merge node, it has two
parents. All the rest of the nodes have one parent.

The SHA-1/160 hash of the changeset record becomes the changeset ID.

All changesets are stored in the changelog, which
 is another revlog file.

[48] There is a
 Bigfiles extension which works around the problem by keeping the
 large file somewhere else and storing a reference to it.

Veracity: DAGs and Data

 Veracity is
 written in
 C (the core libraries) and JavaScript (the web applications).
 It is primarily a command-line application (vv) but also contains a
 built-in web server and web-based user interface.

I am using Veracity for version control as I write this book. So
in the following examples, I’m just going to crawl through the guts of my book repository.
A little information up-front:

	

 The Veracity scripting interpreter is called
 vscript. The scripting language is JavaScript,
 extended with a bunch of hooks into the Veracity libraries.

	

 The name of my repository instance is book2.

	

 In general, Veracity stores everything in JSON.

DAGs and Blobs

 A Veracity repository stores two kinds of things: DAGs and blobs.
 First let’s talk about DAGs.

 A DAG is used to represent the version
 history of something. Each node of the DAG represents one version,
 with one or more arrows pointing to the version(s) from which that node
 was derived. A DAG has one root node.[49] If a DAG has just one leaf
 node, then we know without ambiguity which version is the
 latest.

 Veracity supports two kinds of DAGs:

 	

 A tree DAG
 keeps the version history of a directory structure from a filesystem. Each node
 of the DAG represents one version of the whole tree.

	
 A database (or “db”) DAG keeps the version history of a database, or a
 list of records. Each node of the DAG represents one state of the complete
 database.

 A repository can have many database DAGs, each with a different purpose,
 distinguished by a numeric ID we call a dagnum.

 Here’s a vscript snippet which
 lists all the DAGs in a repository:

var r = sg.open_repo("book2");
var a = r.list_dags();
r.close();
print(sg.to_json__pretty_print(a));

When I run this script, I get:

eric:~ eric$ vscript list_dags.js
[
 "0000000010101042",
 "0000000010101052",
 "0000000010102062",
 "0000000010102072",
 "0000000010201001",
 "0000000010201011",
 "00000000102021c2",
 "00000000102021d2",
 "00000000102031c2",
 "00000000102031d2",
 "00000000102040c2",
 "00000000102040d2",
 "00000000102051c2",
 "00000000102051d2",
 "00000000102071c2",
 "00000000102071d2",
 "0000000010301002",
 "0000000010301012",
 "0000000010302002",
 "0000000010302012"
]

Well, that’s not very friendly, is it? All those hex numbers! And how
can there be 20 DAGs in this repository, anyway?

Actually, there are only 10. Sort of. What we’ve got here are 10
 “real” DAGs, each of which has an audit DAG.

 For every changeset in every
 non-audit DAG, an audit record is added (to its audit DAG) containing
 the UTC timestamp (on the local machine) and the userid of who committed
 it.

If you look closely, the audit DAGs are evident here
 because they’re the ones where the second digit (from the right) is an odd
 number.

The purpose of each DAG can be found by looking at the bits in the dagnum
 while reading a particularly tedious section of the Veracity source code.
 I’ll spare you the trouble. Here is a description of all 10 DAGs:

 	dagnum	Description
	0000000010101042	Areas (db)
	0000000010102062	Users (db)
	0000000010201001	Version control (tree)
	00000000102021c2	VC Comments (db)
	00000000102031c2	VC Stamps (db)
	00000000102040c2	VC Tags (db)
	00000000102051c2	VC Named branches (db)
	00000000102071c2	VC Hooks (db)
	0000000010301002	Work items (db)
	0000000010302002	Builds (db)

As you can see, the db DAGs have the tree DAG outnumbered, 9 to 1. In
 fact, those 10 audit DAGs are db DAGs as well. So we’ve got 19 db DAGs and 1 tree DAG. This is fairly typical
for a Veracity repository. The source tree itself is filesystem-oriented data,
but most other data fits better into a record-with-fields design. Veracity
uses db DAGs to track lots of different stuff.

Six of the DAGs in this list are related to version control.
 There is the tree itself, and then we have one DAG each to keep track of
 comments, stamps, tags, named branches, and hooks.

The users DAG is used to keep track of user accounts. The areas DAG can
 be used to keep track of which DAGs logically go together. All six of the
 version control (VC) DAGs are in one area. Work items and builds are another area.

Before we go on, we should tidy up a bit. We’ve got enough big long hex numbers
 around, so let’s get rid of the ones for the dagnums. The scripting API
 has defined constants for all the primary dagnums.

eric:~ eric$ vscript
vscript> print(sg.dagnum.VERSION_CONTROL)
0000000010201001
vscript> ^D

Now let’s dive into the version control DAG itself. The way a DAG works is
 that the most recent information is in the leaves.

Here’s a little script to list all the leaf nodes for the version control tree DAG:

var r = sg.open_repo("book2");
var leaves = r.fetch_dag_leaves(sg.dagnum.VERSION_CONTROL);
r.close();
print(sg.to_json__pretty_print(leaves));

Running the script, I get one result, indicating that my repository has no branching going on:

eric:~ eric$ vscript fetch_dag_leaves.js
[
 "f10628e5792251dc886f600a6ae8610a38ac2204"
]

The ID of a dagnode is also the ID of its changeset blob. Which reminds
 me, let’s talk about blobs.

A blob is just a sequence of bytes. It can be empty, or it can have
 many gigabytes in it. The length of a blob is represented as a
 64-bit integer, so Veracity can handle any size blob you’ve got.

 A repository provides key-value storage for blobs. The key for
 each blob is the cryptographic hash of its contents.
 The repository in this example is configured to use SHA-1, the
 same hash function used by Mercurial and Git.

 In the Veracity code, we use the word HID, short for “hash ID”, to refer to the hash of a blob.

 Whenever you retrieve a blob (in full), the HID is verified.

 There are two kinds of blobs.

 	User data. Every file you store under
 version control becomes a blob. Actually each version of that file
 becomes a blob.

	Program data. Program data is used to store things
 that Veracity needs to remember, such as the contents of a directory, or database records, or changeset objects. All program data is stored as JSON.

 When creating a new changeset in a DAG, we create a serialized changeset
 record. The HID of that record becomes the ID of the new
 dagnode.

Changesets

 So, when we ask for the dagnode IDs for the leaf nodes, the resulting
 IDs can be used to retrieve the changeset blob. Here is what that
 changeset blob looks like:

eric:book2 eric$ vv dump_json f10628e5792251dc886f600a6ae8610a38ac2204
{
 "dagnum" : "0000000010201001",
 "generation" : 91,
 "parents" :
 [
 "c821cfbc8964db9958d1278a5e4e2947462730e9"
],
 "tree" :
 {
 "changes" :
 {
 "c821cfbc8964db9958d1278a5e4e2947462730e9" :
 {
 "g3a3b61269bea4392951a785dcf7efbde40e5331a56db11e0a84b60fb42f09aca" :
 {
 "hid" : "40c1af01a8c0cea66ecb99529befbd8e7a004c42"
 },
 "g8a7471f886864c04a836d0c4621df781a2e67bbe572611e08f5d60fb42f09aca" :
 {
 "hid" : "a3656282d8c467f00b21d83317d2de0374af761c"
 }
 }
 },
 "root" : "c86c077f1f0c165f90ca7715b4a41d8281fc5feb"
 },
 "ver" : 1
}

As I mentioned before, there are two kinds of DAGs, db and tree. The
 version control DAG is, of course, a tree DAG, so its changeset records
 have a “tree” section. The db changesets look a little different as
you’ll see later.

	dagnum identifies the DAG to which this changeset belongs.

	generation is an integer which indicates the distance from this dagnode to the root. The root dagnode has a generation of 1. All other nodes have a generation which is 1 + the maximum generation of its parents.

	ver defines the version number of the format of the changeset record.

	parents is an array of references to the parents of this dagnode.

	tree.changes contains one entry for each parent. Each such entry contains a list of everything in this dagnode which has changed with respect to that parent.

	tree.root contains the HID of the treenode for the root of the tree.

So, what’s a treenode?

Treenodes

 In a version control tree, each of the user’s files is stored as a
 blob. But each directory is a treenode. Here’s one:

eric:book2 eric$ vv dump_json c86c077f1f0c165f90ca7715b4a41d8281fc5feb | expand -t 2
{
 "tne" :
 {
 "g3a3b61269bea4392951a785dcf7efbde40e5331a56db11e0a84b60fb42f09aca" :
 {
 "hid" : "40c1af01a8c0cea66ecb99529befbd8e7a004c42",
 "name" : "@",
 "type" : 2
 }
 },
 "ver" : 1
}

This treenode is actually what we call the “super-root”. It’s an extra level of
 tree hierarchy that the user never sees, so that we can record metadata about
 the user’s root. So let’s dive one level deeper.

eric:book2 eric$ vv dump_json 40c1af01a8c0cea66ecb99529befbd8e7a004c42 | expand -t 2
{
 "tne" :
 {
 "g0ae054064de54d4b88db6d8b26ad4d79688421e0595811e0804960fb42f09aca" :
 {
 "bits" : 1,
 "hid" : "56eedb1343e12183875d14a1ec3d1a4098d49a25",
 "name" : "g",
 "type" : 1
 },
 "g8a7471f886864c04a836d0c4621df781a2e67bbe572611e08f5d60fb42f09aca" :
 {
 "hid" : "a3656282d8c467f00b21d83317d2de0374af761c",
 "name" : "version_control_howto.xml",
 "type" : 1
 },
 "g8e481f4af9d5450a83fc77cca7f0bc07a70fdfa466e511e0837160fb42f09aca" :
 {
 "hid" : "9e65873dbc6d7c8579392a6acc9a856d25bb0c46",
 "name" : "docbook-xsl-1.76.1",
 "type" : 2
 },
 "gb45372a549bb4044b65b788212d0828af338a140580311e08ced60fb42f09aca" :
 {
 "hid" : "85e06e062d72def73dce1897bdcef9531ec87526",
 "name" : "images",
 "type" : 2
 },
 "ge502a109a22e44c099d66014fb5ecd1d9477f9025d3b11e0b7a360fb42f09aca" :
 {
 "hid" : "19ba6f1d215bfad27181c4113ce80985dae7fdeb",
 "name" : "custom_fo.xsl",
 "type" : 1
 }
 },
 "ver" : 1
}

This is a more illustrative treenode. Basically its tne object (short for tree node entry) contains a list of entries, one for each item in the directory.

This directory has five entries in it:

	

 g is a bash script I use to generate a PDF.

	

 version_control_howto.xml is the DocBook file
 containing all my content.

	

 docbook-xsl-1.76.1 is a copy of the DocBook XSL stylesheets.

	

 images is a subdirectory containing all the artwork for the book.

	

 custom_fo.xsl is my XSL customization layer.

For each entry, the treenode knows the HID of the blob containing the
 contents of that item. In the case of a file, such as custom_fo.xsl, the
 HID refers to the blob that contains the actual contents of the file. In the case of a subdirectory like
 images, the HID refers to another treenode.

The blob a3656282d8c467f00b21d83317d2de0374af761c contains (one version
 of) the DocBook
 content of this book.

DB Records

 So where’s the log message on this commit? For that we have to look
 in a different DAG. Using the same technique as above, we find that
 the leaf for the version control comments DAG is
 053da8cbbd986b14dc06b3d8dab08be3388266ff. Let’s dump that changeset
 and see what it looks like.

eric:book2 eric$ vv dump_json 053da8cbbd986b14dc06b3d8dab08be3388266ff | expand -t 2
{
 "dagnum" : "00000000102021c2",
 "db" :
 {
 "changes" :
 {
 "9ff7c857361d30d6a51b9fcf9f5ddbff9940d4e1" :
 {
 "add" :
 {
 "fb96b2c70dcca6a82e6b8ee222c26395cccf4d42" : 0
 }
 }
 }
 },
 "generation" : 91,
 "parents" :
 [
 "9ff7c857361d30d6a51b9fcf9f5ddbff9940d4e1"
],
 "ver" : 1
}

This is a db changeset instead of a tree changeset. It contains a
 “db” section, which, again, contains one delta against each parent. That delta indicates that one new record was added. Let’s dump the blob for the new record and see what it looks like.

eric:book2 eric$ vv dump_json fb96b2c70dcca6a82e6b8ee222c26395cccf4d42 | expand -t 2
{
 "csid" : "f10628e5792251dc886f600a6ae8610a38ac2204",
 "text" : "committing my changes before I continue writing"[50]
}

And there’s the db record for the comment. Note that the csid field matches the
 changeset ID from the version control DAG.

What about the who and when? Once again, we need to check another DAG,
 the audit DAG for the version control DAG. Its dagnum is 0000000010201011.
 I grab its only leaf and dump the corresponding changeset record:

eric:book2 eric$ vv dump_json 15bc2d16081d6ad6baeb4c790821d8aeee864d34 | expand -t 2
{
 "dagnum" : "0000000010201011",
 "db" :
 {
 "changes" :
 {
 "3a4b6f6222d5ae761ad375eb1c7aa8a5f9ba0390" :
 {
 "add" :
 {
 "c52ff03833aeb8f180583ce2fc7ea7bbf7e392bf" : 0
 }
 }
 }
 },
 "generation" : 92,
 "parents" :
 [
 "3a4b6f6222d5ae761ad375eb1c7aa8a5f9ba0390"
],
 "ver" : 1
}

Here is the new record:

eric:book2 eric$ vv dump_json c52ff03833aeb8f180583ce2fc7ea7bbf7e392bf | expand -t 2
{
 "csid" : "f10628e5792251dc886f600a6ae8610a38ac2204",
 "timestamp" : "1304457549322",
 "userid" : "gc580073ae5164a61bd92c3241bf3d9f457b0b01056db11e0995060fb42f09aca"
}

The value for userid isn’t very intuitive, is it? That is actually the record ID for the user record, located over in a separate DAG.

Here is a script to dump all user records:

eric:~ eric$ cat u.js
var repo = sg.open_repo("book2");
var zs = new zingdb(repo, sg.dagnum.USERS);
var recs = zs.query('user', ['*']);
repo.close();
print(sg.to_json__pretty_print(recs));

Running the script produces the following output:

eric:~ eric$ vscript u.js | expand -t 2
[
 {
 "name" : "eric",
 "prefix" : "X",
 "recid" : "gc580073ae5164a61bd92c3241bf3d9f457b0b01056db11e0995060fb42f09aca"
 }
]

So at last you can see that it was me who did the commit shown above.

Templates

 Now let’s dive a bit deeper. A db DAG contains a
 “database”, or a set of records. These records must follow a template.
 That template is basically like a schema for the database. It describes
 one or more record types, specifying the fields for each record type.

 Here is the template for the version control comments DAG:

{
 "version" : 1,
 "rectypes" :
 {
 "item" :
 {
 "fields" :
 {
 "csid" :
 {
 "datatype" : "string",
 "constraints" :
 {
 "required" : true,
 "index" : true
 }
 },
 "text" :
 {
 "datatype" : "string",
 "constraints" :
 {
 "required" : true,
 "maxlength" : 16384,
 "full_text_search" : true
 }
 }
 }
 }
 }
}

It is illegal to have a template where merge can fail. The template
above satisfies that rule because it has no record ID, which means that records cannot be modified and that unique constraints are not allowed. This template is a rather simplistic example.

 Here’s a
slightly more complicated example, the template for version control tags:

{
 "version" : 1,
 "rectypes" :
 {
 "item" :
 {
 "merge" :
 {
 "merge_type" : "field",
 "auto" :
 [
 {
 "op" : "most_recent"
 }
]
 },
 "fields" :
 {
 "csid" :
 {
 "datatype" : "string",
 "constraints" :
 {
 "required" : true,
 "index" : true
 }
 },
 "tag" :
 {
 "datatype" : "string",
 "constraints" :
 {
 "required" : true,
 "index" : true,
 "unique" : true,
 "maxlength" : 256
 },
 "merge" :
 {
 "uniqify" :
 {
 "op" : "append_userprefix_unique",
 "num_digits" : 2,
 "which" : "least_impact"
 }
 }
 }
 }
 }
 }
}

Like a comment, a tag has just two fields: The changeset ID to which it
applies and a string. But for a tag, that string is required to be unique, which introduces the possibility that the unique constraint could be violated on a merge.
So Veracity requires us to provide a way to uniqify, to resolve
the violation of the unique constraint automatically as the merge is happening.

Repository Storage

Now let’s look at how all this stuff is actually stored.

 The repository API presents an abstraction of a repository instance.
 Callers of the API remain unaware of certain details of exactly how
 dagnodes and blobs are being stored. These details are left to
 the storage implementation, thus allowing different tradeoffs to be used for
 different situations.

 In Veracity 1.0, the only shipping implementation of this repository API
 is called FS3. The
 “FS” stands for “filesystem”, representing the fact that blobs are
 simply stored in files (although not one blob per file). The “3”
 simply means that it is the third incarnation—FS1 and FS2 did not survive the development process.

 FS3 stores repositories in the “closet”, which by default is a
 directory in your home directory named .sgcloset.

eric:book2 eric$ cd ~/.sgcloset/

eric:.sgcloset eric$ ls -l
total 496
-rw-r--r-- 1 eric staff 60416 May 3 18:02 descriptors.jsondb
drwxr-xr-x 4 eric staff 136 May 3 18:02 repo
-rw-r--r-- 1 eric staff 190464 Apr 24 19:35 settings.jsondb

eric:.sgcloset eric$ cd repo

eric:repo eric$ ls -l
total 0
drwxr-xr-x 22 eric staff 748 May 3 15:04 alpo_858b
drwxr-xr-x 16 eric staff 544 May 3 18:00 book2_d2a1

eric:repo eric$ cd book2_d2a1/

eric:book2_d2a1 eric$ ls -l
total 771928
-rw-r--r-- 1 eric staff 20480 Mar 25 07:28 0000000010101042.dbndx
-rw-r--r-- 1 eric staff 28672 Mar 25 07:28 0000000010102062.dbndx
-rw-r--r-- 1 eric staff 3390464 May 3 16:19 0000000010201001.treendx
-rw-r--r-- 1 eric staff 58368 May 3 16:19 0000000010201011.dbndx
-rw-r--r-- 1 eric staff 118784 May 3 16:19 00000000102021c2.dbndx
-rw-r--r-- 1 eric staff 19456 Mar 25 07:28 00000000102031c2.dbndx
-rw-r--r-- 1 eric staff 21504 Mar 25 07:28 00000000102040c2.dbndx
-rw-r--r-- 1 eric staff 75776 May 3 16:19 00000000102051c2.dbndx
-rw-r--r-- 1 eric staff 18432 Mar 25 07:28 00000000102071c2.dbndx
-rw-r--r-- 1 eric staff 99328 Mar 25 07:28 0000000010301002.dbndx
-rw-r--r-- 1 eric staff 58368 Mar 25 07:28 0000000010302002.dbndx
-rw-r--r-- 1 eric staff 390010297 May 3 16:19 000001
drwxr-xr-x 62 eric staff 2108 May 3 16:19 f
-rw-r--r-- 1 eric staff 1283072 May 3 16:19 fs3.sqlite3

These files are my book repository. Actually, two of them matter more
 than the others.

	
All the blobs are stored in the file called 000001. FS3 stores
 blobs by appending them to this file. When the file gets to be a gigabyte,
 it starts a new file called 000002.

 Reflecting a strong bias toward reliability, the FS3 data file is
append-only. Once a blob has been appended, it is never altered.
 Furthermore, Veracity’s repository API has no way to remove a blob or a dagnode.

	
 The other important file is fs3.sqlite3. As its
 name suggests, this is a SQLite[51] database. It contains two
 things:

 	

 The list of blobs, and for each blob, the offset/length of where to find it in the data file.

	

 The list of dagnodes.

 All of the other files in the repository directory are somewhat secondary.

 Most of them are repository indexes, with file names ending in ndx. We can think of these in the same way that we think about indexes in a SQL database. They do not contain actual data; they exist simply to make
 certain operations faster.
 It is possible to delete
 all the repository indexes and reconstruct them using nothing more than the data
 file(s) and the fs3.sqlite3 file.

 Note that in some situations it is legal
 for a Veracity repository instance to have no indexes at all. This capability
 is helpful for setting up a very scalable central server.

 For Veracity 1.0, repository indexes are not transferred by clone,
 push, or pull. Each repository
 instance is responsible for maintaining its own indexes.

Blob Encodings

 The Veracity repository API allows a blob to be stored in one of three “encodings”.

 	

 full — the exact bytes of the blob are all stored

	

 zlib — the blob is stored compressed

	

 vcdiff — the blob is stored as a vcdiff delta relative to another blob

 For performance, FS3 stores all incoming new blobs in the zlib encoding.

 Once the blob is stored in a given repository instance,
 its encoding cannot be changed. But its encoding can be altered
 in the course of a clone operation. While the clone command copies the blob
 from one instance of the repository to another, it can re-encode the
 blob as it passes through. For example, the following Veracity command
produces a deltified copy of a repository by using the --pack option with the clone command.

~ harry$ vv clone --pack lottery lottery_deltified

 And that reminds me that I should say a word or two about Veracity’s
 implementation of the communication between repository instances.

Similar to the repository API, another API is used to hide the details for
clone, push, and pull. Veracity currently includes two implementations of this
API, one for local operations and one which works over HTTP.

By default, clone, push, and pull always transfer blobs without changing
the encoding. This means that if a blob is in deltified (vcdiff) form, it will be
transferred over the network in that form, thus saving network traffic.

[49] Git allows the DAG to have multiple root nodes. Veracity does not.

[50] This brief, content-free log message was not a shining example of best practices.

[51] http://www.sqlite.org/

Chapter 13. Best Practices

I close this book with some general advice for effective software development using version control.

Run diff just before you commit, every time

Never commit your changes without giving them a quick review in some
 sort of diff tool.

Read the diffs from other developers too

Every morning before you start your own coding tasks, use your favorite
 diff tool[52] to look at all the changes that everybody else checked in the day
before.

Many of the best developers I have known make this a habit.

When you read the diffs, two good things might happen:

	The code might get better. Reading the diffs is like an informal code review. You might find something that needs to be fixed.

	You might learn something. Maybe one of your coworkers is using a technique you don’t know about. Or maybe reading the diffs simply gives you a deeper understanding of the project you are working on.

[52] http://www.sourcegear.com/diffmerge/—Your favorite diff tool is SourceGear DiffMerge, right? :-)

Keep your repositories as small as possible

And no smaller.

Since the DVCS model involves every developer keeping a
 complete copy of the repository on her desktop machine,
 it is best to be intentional about how much stuff goes
 into a single repository. It is not
 a good idea for a large corporation to have just one
 repository into which all projects go.

Group your commits logically

Each changeset you commit to the repository should
 correspond to one task. A “task” might be a bug-fix or a feature. Include
 all of the repository changes which were necessary to complete that task
 and nothing else. Avoid fixing multiple unrelated bugs in a single changeset.

Explain your commits completely

Every version control tool provides a way to include a log message (a comment) when committing
 changes to the repository. This comment is important. If we consistently
 use good comments when we commit, our repository’s history contains not only every
 change we have ever made, but it also contains an explanation of why those
 changes happened. These kinds of records can be invaluable later as we
 forget things.

I believe developers should be encouraged to enter log messages which
 are as long as necessary to explain what is going on. Don’t just type
 “minor change”. Tell us what the minor change was. Don’t just tell us
 “fixed bug 1234”. Tell us what bug 1234 is and tell us a little bit about
 the changes that were necessary to fix it.

Only store the canonical stuff

People sometimes ask us what kind of things can be stored in a
 repository. In general, the answer is: “Any file”. It is true that this
 book is focused on tools which are designed for software developers.
 However, any modern VCS doesn’t really care about what kinds of files it
 is asked to store.

 Although you can store anything you want in a repository, that doesn’t
 mean you should. The best practice here is to store everything which is
 created manually, and nothing else.
 I call this “the canonical stuff”.

Do not store any file which
 is automatically generated. Store your hand-edited source code. Don’t
 store EXEs and DLLs. If you use a code generation tool, store the input
 file, not the generated code file. If you generate your product
 documentation in several different formats, store the original format,
 the one that you manually edit.

If you have two files, one of which is automatically generated from the
 other, then you just don’t need to store both of them. You would in
 effect be managing two expressions of the same thing. If one of them gets
 out of sync with the other, then you have a problem.

Don’t break the tree

 [image: Don’t break the tree]

The benefit of working copies is mostly lost if the contents of the
 repository become “broken”. At all times, the contents of the repository
 should be in a state which allows everyone on the team to continue working.
 If a developer checks in some code which won’t build or won’t pass
 the test suite, the entire team grinds to a halt.

Many teams have some sort of a social penalty which is applied to
 developers who break the tree. I’m not talking about anything severe, just
 a little incentive to remind them to be careful. For example,
 require the guilty party to put a dollar in a glass jar. (Use the money to
 take the team to go see a movie after the product is shipped.) Another
 idea is to require the guilty individual to make the coffee every morning.
 The point is to make the developer feel somewhat embarrassed, but not
 punished.

Anyway, your central repository is a place you share with the others
 on your team. Respect them by being careful about what you push there.
 At a minimum, make sure that stuff builds on your machine before you
 commit and push. If you have an automated test suite, run it and make
 sure you didn’t break anything.

Use tags

Tags are cheap. They don’t consume a lot of resources. Your version control tool
 won’t slow down if you use lots of them. Having more tags does not
 increase your responsibilities. So you can use them as often as you like.
 The following situations are examples of when you might want to use a
 tag:

	
When you make a release, apply a tag to the version from which that release was built. A release is the most obvious time to apply a tag. When you release a
 version of your application to customers, it can be very important to later
 know exactly which version of the code was released.

	
Sometimes it is necessary to make a change which is widespread or
 fundamental. Before destabilizing your code, you may want to apply a tag
 so you can easily find the version just before things started getting
 messed up.

	
Some automated build systems apply a tag every time a build is done.
 The usual approach is to first apply the tag and then do a “get by tag”
 operation to retrieve the code to be used for the build. Using one of
 these tools can result in an awful lot of tags, but I still like the
 idea. It eliminates the guesswork of trying to figure out exactly which
 code was in the build.

Always review the merge before you commit.

Successfully using the branching and merging features of your source
 control tool is first a matter of attitude on the part of the developer. No
 matter how much help the version control tool provides, it is not as smart
 as you are. You are responsible for doing the merge. Think of the tool as a
 tool, not as a consultant.

After your version control tool has done whatever it can do, it’s your
 turn to finish the job. Any conflicts need to be resolved. Make sure the
 code still builds. Run the unit tests to make sure everything still works.
 Use a diff tool to review the changes.

Merging branches should always take place in a working copy. Your
 version control tool should give you a chance to do these checks before you
 commit the final results of a merge branches operation.

Never obliterate anything

Well, almost never.

The purist in me wants to recommend that nothing should ever be
 obliterated. However, my pragmatic side prevails. There are situations
 where obliterate is not sinful.

However, obliterate should never be used to delete actual work. Don’t
 obliterate something just because you discovered it was a bad idea. Don’t
 obliterate something just because you don’t need it anymore. Obliterate is
 for situations where something in the repository absolutely must be removed,
 usually because of legal issues.

Don’t comment out code

When using a VCS, you shouldn’t comment out a big section of code
 simply because you think you might need it someday. Just delete
 it. The previous version of the file is still in your version
 control history, so you can always get it back if and when you need
 it. This practice is particularly important for web developers,
 where the commented-out stuff may adversely affect your page load times.

Use locks sparingly

It is best to use locks only when you need them.

 Don’t lock files just because you think you might need to edit
 them.

Don’t lock whole directories—lock only the specific files you
 need.

Don’t hold locks any longer than necessary.

Build and test your code after every commit

Set up an automated build system which is triggered every time there is a
 new changeset in the repository instance on your central server. That
 system should build and test the code, broadcasting a report of the results
 to the entire team.

Appendix A. Comparison Table

Table A.1. Commands

 	Operation	Subversion	Mercurial	Git	Veracity
	Create	svnadmin create	hg init	git init	vv init
	Checkout	svn checkout	[a]	[b]	vv checkout
	Commit	svn commit	hg commit	git commit[c]	vv commit
	Update	svn update	hg update	git checkout	vv update
	Add	svn add	hg add	git add[d]	vv add
	Edit	 	 	git add[e]	
	Delete	svn delete	hg remove	git rm	vv remove
	Rename	svn move	hg rename	git mv	vv rename
	Move	svn move	hg rename	git mv	vv move
	Status	svn status	hg status	git status	vv status
	Diff	svn diff	hg diff	git diff	vv diff
	Revert	svn revert	hg revert	[f]	vv revert
	Log	svn log	hg log	git log	vv log
	Tag	svn copy[g]	hg tag[h]	git tag	vv tag[i]
	Branch	svn copy[j]	hg branch	git branch	vv branch
	Merge	svn merge	hg merge	git merge	vv merge
	Resolve	svn resolve	hg resolve	 	vv resolve
	Lock	svn lock	[k]	[l]	vv lock[m]
	Clone	 	hg clone	git clone	vv clone
	Push	 	hg push[n]	git push[o]	vv push[p]
	Pull	 	hg pull[q]	git fetch[r]	vv pull[s]
	[a] In Mercurial, the repository instance is stored inside working copy.

[b] In Git, the repository instance is stored inside working copy.

[c] Without -a, commits only those things which have been explicitly added to the git index.

[d] git add is also used to notify Git of a modified file.

[e] Or, automatic when using git commit -a.

[f] git checkout can be used to revert the contents of a file. There is a git revert command but it is used to alter changesets that have already been committed.

[g] Tag appears as a directory in the repository tree. Causes a commit.

[h] Tags are stored in a version-controlled text file. Causes a commit.

[i] Tags are stored in a database DAG.

[j] Branch appears as a directory in the repository tree. Causes a commit.

[k] Lock is unsupported by Mercurial.

[l] Lock is unsupported by Git.

[m] Requires network connection to the upstream repository instance.

[n] Requires --new-branch when pushing a new branch.

[o] By default, pushes only the branches which already exist on the other side.

[p] By default, pushes all changesets in all DAGs.

[q] Does not update the working copy without -u.

[r] git pull is equivalent to pull followed by update.

[s] Does not update the working copy without -u.

Glossary

	acyclic
	Not cyclic.
See Also cyclic.

	add
	
 Add a file or directory to the pending changeset; tell the VCS to begin tracking changes to a file or directory.

	administrative area
	
 Typically, a hidden directory within a working copy where the VCS stores state information.

	atomic commit
	
A commit operation which entirely succeeds or entirely fails. In other words, no matter how many individual modifications are in the pending changeset, after the commit operation, the repository will either end up with all of them (if the operation is successful), or none of them (if the operation fails).

	audit
	In Veracity, a record which stores when a changeset was created and the userid of the user who created it.

	blimey
	
 Term to express surprise or excitement; corruption of “Blind me”.

	blob
	Binary Large Object; a sequence of bytes.

	Bob’s your uncle
	A commonly used British expression which indicates success at the end of a list of instructions.

	box
	See idiot’s lantern.

	BR-549
	Short and easy-to-remember phone number of Samples Sales, Junior Samples’ fictional used car dealership on Hee Haw, an American variety television series.

	branch
	
 Create another line of development.

	Brummagem
	
 The local dialect of Birmingham, England; bears a passing resemblance to English.

	Brummies
	Residents or natives of Birmingham, England. Notable specimens include Neville Chamberlain, Ozzy Osbourne, Steve Winwood, Digby Jones, and Nathan Delfouneso.

	burn down chart
	In iteration based development, a diagram which shows the work completed and the predicted track for the tasks in the current iteration of the project.

	C99
	A dialect of the C programming language, standardized by ISO and ANSI around 1999, over ten years ago, and yet, the Microsoft C compiler still doesn’t support it.

	Cairo filesystem
	
 An object filesystem which was never released, despite it being shown to attendees of the 1993 Microsoft Professional Developers Conference.

	canonical stuff
	Any piece of data which is not automatically derived from another piece of data.

	centralized
	Describes a version control system which requires an
 active connection with a single central server for most
 operations.

	changelog
	In Mercurial, the revlog which contains all the changesets for a repository.

	changeset
	A set of changes which should be treated as an indivisible group; the list of differences between one version of the repository tree and the next version.

	checkin
	A synonym for commit, used by some version control tools.

	checkout
	
 Create a working copy.

	chuffed
	Pleased or delighted.

	clone
	
 Create a new repository instance that is a copy of another.

	closet
	In Veracity, the name of the area where repository instances are stored.

	collision
	With respect to cryptographic hashes, when two different input values result in the same hash result.

	comma
	
 Punctuation mark used primarily for separation of list entries and clauses; practically impossible to use consistently and the cause of many altercations between commaphiles and commaphobes.

	commit
	
 Apply the modifications in the working copy to the repository as a new changeset.

	commit
	To make a new revision of the repository by incorporating a new changeset.

	continuous integration
	The process of automatically building and testing a software project after every commit.

	Crabapple Cove, Maine
	The fictional home town of Hawkeye Pierce in M*A*S*H.

	create
	
 Create a new, empty repository.

	cryptographic hash
	A short digest (typically 160, 256, or 512 bits in length) which is computed from an arbitrarily large piece of data using an algorithm that makes it infeasible to create two different pieces of data with the same digest.

	CVCS
	Centralized Version Control System; a general term used when referring to the class of version control systems which require a single central server.

	CVS
	
 Concurrent Versions System; a second generation version control tool which was extremely popular. With Subversion having largely succeeded in its goal of being “a compelling replacement for CVS”, most people in the industry would agree that CVS usage is in decline.

	cyclic
	See looping.

	DAG
	directed acyclic graph.

	dagnum
	In Veracity, a hexadecimal identifier for a DAG.

	data
	
 Plural form of datum; commonly used by authors as a singular noun, often over the objections of their editors.

	decentralized
	Describes a version control system which allows each node to
 operate independently, without the need for active
 communication with a single central server.

	deduplication
	The removal of duplicate copies of data through the use of cryptographic hashes.

	deflate
	The compression algorithm used by zlib. Veracity uses deflate for blob storage.

	delete
	
 Delete a file or directory in the working copy, adding the deletion to the pending changeset.

	delta
	An expression of the difference between two pieces of data.

	diff
	
 Show the details of the modifications that have been made to the working copy.

	DiffMerge
	A free (gratis) application for comparing and merging text files, created and distributed by SourceGear, supported on Mac, Windows, and Linux.

	digest
	See cryptographic hash.

	directed acyclic graph
	A data structure with a series of nodes, each of which may have directed edges (arrows) pointing to other nodes, so long as the arrows never form a cycle.

	DocBook
	The XML-based markup language I am using as I write
 this book. I do all of my editing of the XML file with vim.
 The DocBook XML is then processed with xsltproc and the
 docbook-xsl-1.76.1 stylesheets, which can generate a variety
 of formats. For the printed edition, the stylesheets generate
 an FO file which is
 converted to a press-ready PDF/X-1a file by Antenna House Formatter
 v5.3.

	Don’t Panic!
	The best advice given to humanity by Douglas Adams; also one of the catch phrases of Lance-Corporal Jones on the British comedy television series Dad’s Army.

	doss
	Same as faff, if you’re a Brummie.

	DVCS
	Decentralized (or Distributed) Version Control System; a general term used when referring to the class of version control systems which are decentralized.

	edit
	
 Modify a file in the working copy. Some version control tools need to be explicitly notified that the user wants to modify a file or that a file has already been modified. Others detect modified files automatically.

	eight-day clock
	
 I have no idea what this means, but apparently Southern folks say it, and it sounds funny.

	England
	
 Current country and former nation-state formed from the unification of the Kingdoms of East Anglia, Essex, Kent, Mercia, Northumbira, Sussex, and Wessex. Home to numerous dialects and slang terms, and the country with the most sane rules for using punctuation with quotations.

	faff
	To waste time.

	feature branch
	A branch which is used specifically for the development of one feature.

	FS3
	In Veracity, the name of an implementation of the repository storage API.

	Futilisoft
	A fictional software company I made up for the examples in this book.

	GID
	In Veracity, Global ID. The concatenation of the letter 'g' plus a type 4 UUID plus a type 1 UUID.

	gunter
	To repair.

	head
	The tip of a branch; a node on a named branch which has no children that are also members of the same named branch.

	hg
	The name of the Mercurial command-line app.

	HID
	In Veracity, Hash ID. A hexadecimal (all lower case) expression of a cryptographic hash.

	hospital
	“It’s a big building with patients, but that’s not important right now.”

	Howzat?
	
 Common appeal to a cricket umpire by a bowler or fielder; corruption of “How’s that?”.

	idiot’s lantern
	See telly.

	indent
	
 A utility that reformats C code.

	JSON
	JavaScript Object Notation; a JavaScript-based syntax for representing objects with named properties and arrays.

	Keep calm and carry on
	Slogan on a British morale-boosting poster produced at the start of the Second World War.

	kerfuffle
	Disturbance or disruption.

	label
	A synonym for tag, used by some version control tools.

	landlady face
	Facial expression like that of a landlady trying to collect overdue rent; indicative of displeasure or ill-humour.

	last wicket
	The dismissal of the tenth batsman, resulting in the end of a cricket innings.

	leaf node
	A DAG node which has no children.

	lock
	
 Prevent other people from modifying a file.

	lock
	A mechanism used to prevent other users from modifying a file.

	log
	
 Show the history of changes to the repository.

	looping
	See cyclic.

	manifest
	In Mercurial, the list of all files in a revision of the repository.

	master branch
	The main line of development. In Mercurial this is called “default”.

	merge
	
 Apply changes from one branch to another.

	
 Combine two versions of a file or directory into one by
 appropriately incorporating the changes made in both
 versions.

	mithering
	Irritation or bother.

	move
	
 Move a file or directory in the working copy, adding the move operation to the pending changeset.

	named branch
	A named line of development within a version control DAG. Named branches allow multiple lines of development to exist within a single repository instance. An alternate style of branching with a DVCS is to keep one branch per repository instance, though this approach is considered less flexible.

	nark
	State of annoyance or irritation.

	obliterate
	To alter the history of a version
 control repository by completely removing something that was
 previously committed.

	Ottumwa, Iowa
	The non-fictional home town of Radar O’Reilly in M*A*S*H.

	parents
	If a DAG node D is derived from DAG nodes B and C, then B and C are said to be the parents of D.

	pending changeset
	The changes which have been made to a working copy but which have not yet been committed to a repository instance.

	plump turkey in November
	
 Likely doomed to end in somebody’s belly for the Thanksgiving holiday in the United States.

	polishing branch
	A temporary branch which is used during the time that a team is polishing software to get it ready for a release.

	Pond, the
	Large body of water east of Halifax, Nova Scotia; better known as the Atlantic Ocean.

	Powerball
	A lottery in the United States.

	pull
	
 Copy changesets from a remote repository instance to a local one. Does not affect working copies.

	push
	
 Copy changesets from a local repository instance to a remote one. Does not affect working copies.

	put paid to
	To complete or finish a task.

	Pyrenean Gold Press
	The small publishing identity I created because I am too much of a control freak to work with an existing publisher.

	RCS
	Revision Control System; the second version control system, first released in 1982.

	release branch
	A branch which contains the code/content which exactly corresponds to a released version of software.

	rename
	
 Rename a file or directory in the working copy, adding the rename operation to the pending changeset.

	repository
	An archive which contains every version of the tree which has ever been committed, plus metadata about who did the commit, when it was done, and why.

	repository instance
	In a DVCS, a specific copy of the repository.

	resolve
	
 Handle conflicts resulting from a merge.

	revert
	
 Undo modifications that have been made to the working copy.

	revlog
	In Mercurial, the file format which stores all revisions of a file.

	root dagnode
	The first node of a DAG; the node which has no parents.

	Samples, Junior
	Honest as the day is long; unable to pronounce “trigonometry”.

	SCCS
	Source Code Control System; the first version control system, created in 1972.

	Scrum
	An iteration-based methodology for software development.

	SHA-1
	A 160 bit cryptographic hash function which was a government standard in the United States until it was replaced by SHA-2. Considered obsolete for many applications.

	SHA-2
	A family of cryptographic hash functions. SHA-2 is a government standard in the United States. SHA-2 can be used to create digests of 224, 256, 384, or 512 bits.

	shambolic
	Chaotic; disorganized.

	ship-shape and Bristol fashion
	Immaculately in order; all components of a larger whole in their proper place.

	shrinkwrap
	Software that is licensed to be installed on computers
 owned by the customer.

	Skein
	A family of cryptographic hash functions created by Bruce Schneier and others. At the time of this writing, Skein is a candidate in the competition to select a hash algorithm which will become SHA-3.

	skiving off
	Pretending to be working while doing nothing useful.

	SourceGear
	The software company where I work.

	Spit the bit
	To grow tired and give less effort.

	status
	
 List the modifications that have been made to the working copy.

	sticky wicket
	Literally a damp playing surface for the game of cricket; slang term for any difficult situation.

	svn
	The name of the Subversion command-line app.

	tag
	
 Associate a meaningful name with a specific version in the repository.

	telly
	Television.

	template
	In Veracity, a JSON object which specifies the record types for a decentralized database.

	treenode
	In Veracity, a JSON object which lists the contents of a directory under version control.

	uniqify
	In Veracity, to automatically resolve the violation of a unique constraint, using instructions from a template.

	update
	
 Update the working copy with respect to the repository.

	UUID
	Universally Unique Identifier.

	vcdiff
	A binary delta algorithm described in RFC 3284[53].

	VCS
	Version Control System; a generic term used when referring to any version control system.

	Veracity
	
 An open source distributed version control system created by
 SourceGear.

	vscript
	In Veracity, the name of the command-line application for executing scripts.

	vv
	The name of the Veracity command-line app.

	whinge
	To complain persistently.

	wicket
	
 A cricket term with several distinct meanings: the sets of wooden stumps protected by batsmen; the act of dismissing a batsman (similar to a baseball “out” for Americans); or the playing surface itself.

	working copy
	A snapshot of a specific revision of the repository tree, owned by a single user, for the purpose of making modifications which may be committed to the repository to create a new revision.

	Wumpty
	West Midlands Passenger Transport Executive (WMPTE); the Birmingham-area bus authority, also slang for “bus” itself.

	Zawinski’s Law
	
 “Every program attempts to expand until it can read
 mail. Those programs which cannot so expand are replaced by ones which
 can.”

[53] http://tools.ietf.org/html/rfc3284

Index

A
	add, Add, Checkout, Add, Status, Commit, Clone, Add, Status, Commit, Clone, Add, Status, Commit, Clone, Add, Status, Commit
	administrative area, Checkout, Checkout, Add, Status, Commit, Clone, Add, Status, Commit, Clone, Add, Status, Commit
	airplane example, Offline
	ALM (see application lifecycle management)
	Apache License, Apache License 2.0
	application lifecycle management, Integration, Designed for Integration
	atomic commits, My Background, Commit

B
	backup, Implicit Backup
	Bazaar, A History of Version Control, Fast, Weaknesses, Apache License 2.0, Multiple Working Copies
	binary files, Lock, Locks, Locks, Deltas
	Binks, Jar Jar, Advantages
	BitKeeper, Commercial Open Source
	blob, DAGs and Blobs
	branch, Branch, Branch
		feature, Feature Branches
	master, Shrinkwrap
	polishing, Polishing Branches
	release, Release Branches

	branches
		directory, Move, Branch, Easier Merging
	whole-tree, Directed Acyclic Graphs (DAGs), Easier Merging

	Brooks, Fred, Private Workspace
	bug tracking, Integration, Decentralized Database, JavaScript, Scrum

C
	central server, Clone, Directed Acyclic Graphs (DAGs), Private Workspace, Geography, Implicit Backup, Scale out, not just up, Ease of Use, Repository Storage Plugins
	checkout, Checkout, Checkout, Add, Status, Commit, Log, Diff, Clone, Add, Status, Commit
	ClearCase, Scale out, not just up
	clone, Clone, Clone, Add, Status, Commit, Clone, Add, Status, Commit, Clone, Add, Status, Commit, Push, Pull, Log, Diff, Repository Storage
	closet, Clone, Add, Status, Commit
	collard greens, Move
	commit, Commit, Checkout, Add, Status, Commit, Update, Commit (with a merge), Clone, Add, Status, Commit, Clone, Add, Status, Commit, Clone, Add, Status, Commit, Group your commits logically
	conflicts, Update (with merge), Merge (conflicts), Update (with merge), Merge (conflicts), Update (with merge), Merge (conflicts), Update (with merge), Merge (conflicts)
	continuous integration, Tag, Stamp
	create, Create, Create, Create, Create, Create
	cryptographic hash, Hash Functions, Push, Pull, Log, Diff, Git: Cryptographic Hashes, Git: Cryptographic Hashes
	CVS, A History of Version Control

D
	DAG (see directed acyclic graph)
	decentralized database, Decentralized Database, Tag, DB Records
	deduplication, Example with SHA-1
	delete, Delete, Delete, Delete, Delete, Delete, Don’t comment out code
	delta, Deltas
	Deutsch, Peter, Offline
	diff, Diff, Log, Diff, Update, Commit (with a merge), Update, Commit (with a merge), Push, Pull, Log, Diff, Run diff just before you commit, every time
	DiffMerge, Push, Pull, Log, Diff, Read the diffs from other developers too
	directed acyclic graph, Directed Acyclic Graphs (DAGs), Easier Merging, Shrinkwrap, DAGs and Blobs
	disconnected operation, Offline

E
	Eclipse, My Background
	edit, Edit
	edit-merge-commit, Update, Commit (with a merge)

F
	Fossil, Weaknesses
	FS3, Repository Storage Plugins, Repository Storage

G
	generation
		of a DAG, Changesets
	of version control tools, A History of Version Control

	geographically distributed teams, Geography
	Git, A History of Version Control, Fast, Weaknesses, Administration, Basics with Git, Basics with Git, About Veracity, Commercial Open Source, Apache License 2.0, Formal Rename and Move, Multiple Working Copies, Hash Functions, Example with SHA-1, DAGs and Blobs
	GPL, Apache License 2.0

H
	Harry, Brian, My Background
	hash collision, Collisions
	Hudson, Greg, Ease of Use

I
	IBM, A History of Version Control, Scale out, not just up
	immutability, Directed Acyclic Graphs (DAGs), Easier Merging, Update, Commit (with a merge)

J
	JavaScript, JavaScript, Veracity: DAGs and Data
	JSON, JavaScript, Veracity: DAGs and Data

L
	learning curve, Ease of Use
	lock, Lock, Lock, Revert, Locks, Revert, Revert, Locks, Lock, Revert, Use locks sparingly
	log, Log, Log, Diff, Push, Pull, Log, Diff, Push, Pull, Log, Diff, Push, Pull, Log, Diff
	log message, Commit, Checkout, Add, Status, Commit, Changesets, Explain your commits completely

M
	Mercurial, A History of Version Control, Fast, Weaknesses, Administration, Basics with Mercurial, Basics with Mercurial, About Veracity, Commercial Open Source, Apache License 2.0, Multiple Working Copies, Hash Functions, Revlogs, DAGs and Blobs
	merge, Merge (no conflicts), Merge (conflicts), Merge (no conflicts), Merge (no conflicts), Update, Commit (with a merge), Move, Merge (no conflicts)
	Microsoft, A History of Version Control, My Background, Scale out, not just up
	move, Move, Move, Move, Move, Move

N
	named branch, Branch, Branch, Branch
	Norad, My Background

O
	obliterate, Obliterate, Never obliterate anything
	offline, Offline
	open source, Commercial Open Source

P
	parent, Update, Directed Acyclic Graphs (DAGs), Update, Commit (with a merge), Update, Commit (with a merge), Shrinkwrap, Changesets, Changesets, DB Records
	pending changeset, Commit, Add, Delete, Rename, Status, Clone, Add, Status, Commit, Update, Commit (with a merge)
	performance, Fast
	private workspace, Checkout, Private Workspace
	pull, Pull, Push, Pull, Log, Diff, Push, Pull, Log, Diff, Push, Pull, Log, Diff, Repository Storage
	push, Push, Push, Pull, Log, Diff, Push, Pull, Log, Diff, Push, Pull, Log, Diff, Repository Storage

R
	Raymond, Eric, A History of Version Control, Formal Rename and Move
	RCS, A History of Version Control, My Background
	rebase, Directed Acyclic Graphs (DAGs)
	rename, Rename, Rename, Rename, Rename, Formal Rename and Move, Rename
		formal, Rename, Formal Rename and Move
	informal, Rename, Formal Rename and Move

	repository, Create
	repository instance, Clone, Implicit Backup, Push, Pull, Log, Diff, Branch, Push, Pull, Log, Diff, Clone, Add, Status, Commit
	resolve, Resolve, Update (with merge), Merge (conflicts), Update (with merge), Merge (conflicts), Update (with merge), Merge (conflicts)
	revert, Revert, Lock, Revert, Revert, Revert, Lock, Revert
	revlog, Revlogs

S
	SCCS, A History of Version Control
	Schneier, Bruce, Glossary
	Scrum, JavaScript, Scrum
	SHA-1, Push, Pull, Log, Diff, Hash Functions, Git: Cryptographic Hashes, Revlogs
	SHA-2, Hash Functions, Git: Cryptographic Hashes, Collisions
	shrinkwrap software, Shrinkwrap
	Skein, Hash Functions, Git: Cryptographic Hashes, Collisions
	SourceGear, My Background, Commercial Open Source
	SourceOffSite, My Background
	SourceSafe, A History of Version Control, My Background
	Spyglass, My Background
	SQL, Repository Storage Plugins
	stamp, Stamp
	status, Status, Checkout, Add, Status, Commit, Log, Diff, Clone, Add, Status, Commit, Clone, Add, Status, Commit, Clone, Add, Status, Commit, Push, Pull, Log, Diff
	Subversion, A History of Version Control, Basics with Subversion, Basics with Subversion, Apache License 2.0

T
	tag, Tag, Tag, Tag, Tag, Tag, Use tags
	Team Foundation Server, A History of Version Control, My Background, Scale out, not just up
	Teamprise, My Background

U
	uniqify, Templates
	update, Update, Update, Commit (with a merge), Push, Pull, Log, Diff, Push, Pull, Log, Diff
	user accounts, Administration, User Accounts, Clone, Add, Status, Commit

V
	Vault, My Background
	vcdiff, Deltas, Blob Encodings
	Veracity, My Background, Fast, About Veracity, About Veracity, Basics with Veracity, Basics with Veracity, Collisions, Veracity: DAGs and Data

W
	web development, Web
	Wi-Fi, Offline, Integration
	workflow, Flexible Workflows, Workflows, Workflows
	working copy, Checkout, Private Workspace, Multiple Working Copies

Z
	Zawinski, Jamie, Delete, Delete, Delete, Delete

OEBPS/images/verb_resolve.jpg

OEBPS/images/verb_move.jpg

OEBPS/images/verb_tag.jpg

OEBPS/images/veracity_screendump_burndown.jpg

OEBPS/images/verb_edit.jpg

OEBPS/images/team_complexity_5.jpg
(&)

OEBPS/images/features.jpg
POLSHING FEATURE FEATURE
o o

@000
o000
OO

0000\

OEBPS/images/repo_history_line.jpg
O«@<®<®

OEBPS/images/verb_status.jpg
+fedora

+face
+ notlstache
+beard

OEBPS/images/veracity_screendump_builds.jpg
|
;

iy

e

R
¢

d
1]

.
i

.
il

OEBPS/images/web_versions.jpg
RELEASE MASTER

O«O«O«OFO«—O
O"»@“L?@

OEBPS/images/op_commit.jpg
IMIT.
CoMm N

WORKING COPY REPOSITORY

OEBPS/images/timeline.jpg
EveRY
NEVER once FEW YEARS AR QUARTERLY L CONSTANTLY
i 1) 1 I 1)
T T T T T T 1
CARO CARTRIOGE OPERATNG TRADITONAL INTERNAL WEBAVPS AMAZON
FLESYSTEM CGAMES SYSTEMS "SDAINKWRAD* CORPORNTE ' SAAS

SOFTWARE APPS

OEBPS/images/mpr1.jpg
POLISHING MASTER

RELEASE

O*O*O

STUFF THAT'S TOO
RISKY FOR RELEASE

O*O*O

BUG FIXES FOR
THE RELEASE

OEBPS/images/birmingham_dvcs.jpg
BIRMINGHAM, CLEEAND BIRMINGHAM,

ALABAMA m ENGLAND
— covmalsever Y

OEBPS/images/verb_diff.jpg

OEBPS/images/verb_rename.jpg
Dy

OEBPS/images/cvcs_topology.jpg
BIRMINGHAM, SR BIRMINGHAM,

ALABAMA ENGLAND
COMMIT commIT
R re— ' >

UPDATE

SALLY HARRY

OEBPS/images/repo_history_dag_chaos.jpg

OEBPS/images/mona_broken.jpg

OEBPS/images/team_complexity_1.jpg

OEBPS/images/branch_merge2.jpg

OEBPS/images/verb_branch.jpg

OEBPS/images/lottery_history.jpg
— e -
(s vt 1200y
g e

e st sy e

comnae sy
sorpetota ot oy

8 vt sty o e e

et s i a2y
- gt 08y

i o o o st EXEEETEIICEEIED i 1 104ry

o oty

o 022y

o oty Mt 1091 sy
P e

o g1 ey

et gty
e g1 oy
s [RErr—

s i ot 10y

R

OEBPS/images/op_push.jpg

OEBPS/images/op_pull.jpg

OEBPS/images/repo_history_dag_merged.jpg
O<@<Q@=®@.

OEBPS/images/veracity_architecture.jpg

OEBPS/images/OFC_monalisa.jpg
VERSION CONTROL

oy EXAMPLE

eric sink

OEBPS/images/op_update.jpg
< UroATE -

WORKING COPY REPOSITORY

OEBPS/images/verb_add.jpg

OEBPS/images/verb_log.jpg
1503 - began
1519.- completed
1809 /glgaied
1911 Stolen
1913 giéeoveed
1956 - damaged
2011 - fedora

OEBPS/images/verb_lock.jpg

OEBPS/images/birmingham_cvcs.jpg
BIRMINGHAM, SR BIRMINGHAM,

ALABAMA ENGLAND
COMMIT commIT
R re— ' >

UPDATE

SALLY HARRY

OEBPS/images/repo_history_dag.jpg
O«@<@®

OEBPS/images/versions.jpg
V1 0:0-0:0:0-(De—(D)e—()
v2 ‘O‘O‘O\'OvO‘E%—@c—@—
v3 0:0-0-016:0:0:0-0:0-(De—(D)

va z‘»o-o@

OEBPS/images/diffmerge_02.jpg
o v it)

OEBPS/images/mpr3.jpg
MASTER

POLISHING

RELEASE

O*O*O —®-®

ST0fs THATS To0 7\ AL enes
RISKY FOR RELEASE TOMASTER
8
= - 4_ g
E
BUG FIXES FOR
THE RELEASE

c

CRITICAL FIX

OEBPS/images/verb_merge.jpg

OEBPS/images/Eric-paint.jpg

OEBPS/images/team_complexity_10.jpg
908

86

b T

OEBPS/images/bookshelf.jpg

OEBPS/images/mpr2.jpg
MASTER

POLISHING

RELEASE

O<-O+O

STUFF THATS TOO
RISKY FOR RELEASE

O*O*—O*

BUG FIXES FOR
THE RELEASE

ALLFIXES
¢vomsm

OEBPS/images/dvcs_scale_out.jpg

OEBPS/images/verb_obliterate.jpg

OEBPS/images/verb_revert.jpg

OEBPS/images/dvcs_geography.jpg
CRABAPPLE COVE, MAINE

OTTUMWAYIOWA

OEBPS/images/verb_stamp.jpg

OEBPS/images/triangle.jpg
WORKING COPY

OEBPS/images/cylinder.jpg
REPOSITORY

OEBPS/images/verb_delete.jpg

OEBPS/images/dvcs_topology.jpg
BIRMINGHAM, CLEEAND BIRMINGHAM,

ALABAMA m ENGLAND
— covmalsever Y

